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delle Scienze, 181/A, 43124 Parma, Italy

Abstract

A conceptual model is presented for non-Newtonian fluid flow in a rough
channel representing a single fracture. The fluid rheology is described via a
truncated power-law (TPL) model approximating the Carreau constitutive
equation, while the aperture variation along the channel is modeled via a
stochastic distribution of assigned mean and variance; the lognormal and
gamma distributions are considered, together with a deterministic variation
of sinusoidal behavior. The flowrate in a fracture subject to an external
pressure gradient is derived under the lubrication approximation for the two
limiting cases of a pressure gradient which is i) perpendicular and ii) paral-
lel to aperture variation; these parallel and serial arrangements (PA or SA)
provide an upper and lower bound to the fracture conductance. Different
combinations of the parameters describing the fluid rheology and the vari-
ability of the aperture field are considered for a sensitivity analysis. Results
are also compared with those valid for a pure power-law (PL) fluid which
provides a relevant benchmark. The channel flowrate shows a direct/inverse
dependency upon aperture variability for PA/SA. The difference in flowrate
between the PL and TPL models is positively affected by aperture variability
and pressure gradient, negatively affected by flow behaviour index, while its
sign is positive or negative depending on PA/SA. The influence of the spe-
cific pdf adopted for the aperture field is moderate, an increasing function of
aperture variability and depends on the third and fourth moment of the dis-
tribution. The conductance for a deterministic aperture variation exhibits
the same trends as a stochastic variation, with differences from the latter
depending on aperture variability and flow arrangement.
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1. Introduction

Hydraulic fracturing is largely used for optimal exploitation of oil, gas
and thermal reservoirs. Non-Newtonian fluids are most frequently used in
this type of operations [1, 2]; the challenge of modeling flow of these rheolog-
ically complex fluids is compounded by the possible interaction of multiple
non-Newtonian fluids [3]. Complex fluids interact with pre-existing rock
fractures also during drilling operations [4, 5], enhanced oil recovery [6], and
environmental remediation, and other natural phenomena such as magma
intrusions, sand intrusions, and mud volcanoes (see Medina et al., 2015 [7]
and references therein). Hence, it is important to model non-Newtonian flow
in fractured media. A first step in this process is a detailed understanding of
flow in a single fracture, as the space between fracture walls (termed fracture
aperture) is typically spatially variable [8].

A large bibliography exists on Newtonian flow in single, variable aperture
fractures. Neuzil and Tracy [9] and Tsang [10] adopted a one-dimensional
channel model, with channels described by an aperture density distribution
and a spatial correlation length. Other authors [11, 12, 13, 14] extended the
model to two-dimensional spatial variability of assigned correlation function,
while other studies [15, 16, 17, 18] simulated the fracture surface roughness
using fractal models of surface topography. Comprehensive reviews on flow
in a single fracture were provided in [19, 20, 21, 22].

Ultimately, stochastic modeling of aperture variability at the single frac-
ture scale leads to determination of the flowrate under a given pressure gradi-
ent as a function of the parameters describing the variability of the aperture
field and the fluid rheological behaviour. From the flowrate, a flow, or hy-
draulic aperture can then be derived [23]; a second equivalent aperture can
be defined for transport, and usually differs from the hydraulic aperture [24].

The equivalent flow aperture for flow of non-Newtonian fluids of power-
law nature in single, variable aperture fractures has been obtained with an
heuristic approach by Di Federico for a stochastic variation of assigned dis-
tribution [25] and for deterministic variations [26, 27]. Detailed numerical
modeling of flow of a power-law fluid in a variable aperture fracture was
performed by Lavrov [28, 29], whose work demonstrated that pronounced
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channelization effects are associated to a nonlinear fluid rheology; a further
study by Lavrov [30] validated the simplified model of [26]. The availabil-
ity of an equivalent flow aperture as a function of the parameters describing
the fluid rheology and the aperture variability is enticing, as it allows taking
their interaction into account when modeling flow in fracture networks at
a larger scale [31]. Bingham fluid flow in a variable aperture channel was
studied analytically and numerically by Roustaei et al. [32], highlightning
the progressive departure from the lubrication approximation with increas-
ing heterogeneity, the onset of fouling layers, and the existence of a limiting
pressure gradient.

Another relevant issue in non-Newtonian fracture flow is the rheologi-
cal nature of the fluid. The constitutive model routinely used for hydro-
fracturing modeling is the simple, two-parameter power-law [33]. Yet this
model does not characterize real fluids at low and high shear rates, as it
implies, for shear-thinning fluids, an apparent viscosity which becomes un-
bounded for zero shear rate and tends to zero for infinite shear rate. On the
contrary, the four-parameter Carreau constitutive equation includes asymp-
totic values of the apparent viscosity at those limits. Lavrov [34] showed the
Carreau rheological equation is well approximated by the truncated power-
law model, and suggested to adopt the latter model for numerical modeling
of flow in variable aperture fractures. To this end, he derived the expressions
for flow of a truncated power-law fluid between parallel walls under a con-
stant pressure gradient. A method to predict the flow of yield stress fluids
described by a Herschel-Bulkley model and of shear thinning fluids without
yield stress described by Carreau model through rough fractures was recently
proposed and experimentally validated [35, 36].

This paper extends the adoption of the truncated power-law model to
fractures of variable aperture, in a stochastic or deterministic fashion, with
the aim of understanding the joint influence of rheology and aperture spatial
variability in a simplified geometrical setup where the variability is confined
to one-direction, looking at the two limit cases where the aperture variability
is either parallel or perpendicular to the flow direction. This assumption,
which admittedly simplifies the real flow field, aims at providing reference
benchmarks to be compared with more complex simulations. Section 2 sum-
marizes results on flow of a truncated power-law fluid between parallel walls;
Section 3 presents the general expressions of the flowrate for flow perpen-
dicular and parallel to aperture variation; Section 4 deals with a stochastic
aperture variation, and illustrates results stemming from the adoption of two
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different pdfs for the aperture distribution (lognormal and gamma). Section
6 applies the same simplified methodology to a deterministic aperture varia-
tion of sinusoidal behaviour. Then results obtained for the truncated model
are compared with those earlier obtained for pure power-law fluids. Section
7 reports some conclusions.

2. Flow of truncated power-law fluid flow in a constant aperture
fracture

Consider the flow of a shear-thinning non-Newtonian fluid in a fracture of
length L, widthW and constant aperture b; the coordinate system is shown in
Figures 1(a)-(b); the fracture walls are at z = +b/2 and z = −b/2. Suppose
a uniform, positive pressure gradient px = [p(0) − p(L)]/L is applied in the
x direction. Assuming that b� W , the velocity components in the y and z
directions are zero, and the only nonzero velocity component, vx, is solely a
function of z. The fluid is described by the rheological truncated power-law
model, reading, in the simple shear situation described above, τ = µaγ̇, with
τ shear stress, and γ̇ shear rate. The apparent viscosity µa is given by

µa = µ0 for γ̇ 6 γ̇1;

µa = mγ̇n−1 for γ̇1 < γ̇ < γ̇2;

µa = µ∞ for γ̇ > γ̇2;

(1)

In Eq.(1), depicted in Figure 1c, µ0 is the viscosity at zero shear rate, µ∞ is
the limiting viscosity for γ̇ →∞, n and m are the rheological and consistency
index, respectively, γ̇1 = (m/µ0)

1/(1−n) is the lower shear rate at which the
high viscosity cutoff µ0 is introduced, and γ̇2 = (m/µ∞)1/(1−n) is the higher
shear rate at which the low viscosity cutoff µ∞ is introduced. The above four-
parameter model is identical to the pure power-law model of parameters n
and m in the intermediate shear stress range γ̇1 < γ̇ < γ̇2, and overcomes the
limitation of having µa →∞ for γ̇ → 0 and µa → 0 for γ̇ →∞. Lavrov [34]
showed that the truncated power-law model is practically indistinguishable,
for practical purposes, from the Carreau model. He also derived the velocity
field vx(z) and the flowrate per unit width qx = Qx/W under a constant
pressure gradient px. Depending on the aperture value, the flowrate can take
three different expressions, namely

qxI(b) =
b3px
12µ0

for b < b1 =
2µ0γ̇1
px

; (2a)
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qxII(b) =
2(1− n)m3/(1−n)

3(2n+ 1)µ
(2n+1)/(1−n)
0 p2x

+
nb(2n+1)/n

2n+ 1

(
px

2n+1m

)1/n

for b1 < b < b2;

(2b)

qxIII(b) =
b3px

12µ∞
− 2(1− n)m3/(1−n)

3(2n+ 1)p2x

(
1

µ
(2n+1)/(1−n)
∞

− 1

µ
(2n+1)/(1−n)
0

)
for b > b2 =

2mγ̇n2
px

;

(2c)

According to Eqs. (2a)-(2b)-(2c), three flow regimes (I = low shear rate
regime, II = intermediate shear rate regime, and III = high shear rate
regime) are possible within the fracture, depending on the relationship be-
tween its aperture b and the two threshold apertures b1 and b2.

3. Flow in a variable aperture channel

In single fracture flow modeling, the fracture aperture b(x, y) is usually
taken to vary as a two-dimensional, spatially homogeneous and correlated
random field, characterized by a probability density function f(b) of given
mean 〈b〉 and variance σ2

b , and possibly spatial correlation described by an
aperture autocovariance function of given integral scale I or integral scales
Ix and Iy in the anisotropic case (alternatively a fractal distribution of given
Hurst coefficient H and correlated at all scales is adopted).

If an anisotropic aperture field of anisotropy ratio e = Iy/Ix is considered,
the two limiting cases e = 0 and e =∞ give rise to a purely one-dimensional
aperture variation; consequently, flow under an external pressure gradient
can be considered to take place either transverse (case 1, Figure 2a) or par-
allel to aperture variability (case 2, Figure 2b). This approach was used
for Newtonian flow by Silliman [23] to infer estimates of 2-D hydraulic and
transport apertures, by Zimmerman [37] to determine the hydraulic aperture
under deterministic sinusoidal variations, and by Di Federico [26, 25] to de-
rive estimates of hydraulic aperture for non-Newtonian power-law flow under
both deterministic and stochastic aperture variations, respectively. Lavrov
[30] validated the approach with two-dimensional numerical simulations con-
ducted for a deterministic, sinusoidal aperture profile in both directions.
Comparison of his results with the geometric average of flowrates for one-
dimensional sinusoidal variations only along and only across the flow (cases
1 and 2 respectively but with a sinusoidal variation, see Section 5) showed a
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Figure 1: Configuration of the fractures and rheological approximation. a)
Fracture sketch with applied pressure gradient; b) fracture profile in the x
direction; c) apparent viscosity µa as a function of shear rate for the two
models: truncated and pure power-law, respectively.
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Figure 2: Configuration of the fracture. a) Case 1: flow perpendicular to
aperture variation described by the aperture density function f(b); b) case 2:
flow parallel to aperture variation described by the aperture density function
f(b).

relative discrepancy in terms of equivalent aperture equal to less than 10%
for δ < 0.4, δ being the non-dimensional amplitude of the aperture variation.
In the sequel, we consider first case 1, then case 2.

3.1. Flow parallel to constant aperture channels

Consider a fracture of dimensions L and W in the x and y direction,
respectively, and aperture varying only in the y direction. Consider flow
in the direction x parallel to constant aperture channels, i.e., transverse
to aperture variation (case 1, Figure 2a); the applied pressure gradient is
px = [p(0) − p(L)]/L; the volumetric flux is obtained through the follow-
ing procedure. The fracture model is discretized into N neighboring parallel
channels, each having equal width ∆y = W/N , length L and constant aper-
ture bi. Depending on the local aperture value, in each channel the flow
regime is either I, or II, or III, and the corresponding flowrate per unit width
is given either by (2a), (2b), or (2c). The number of channels in each regime
is NI , NII , NIII , respectively, and the total width of the channels in each
regime is WI , WII , WIII with N = NI+NII+NIII and W = WI+WII+WIII ;
the i-th channel in each regime j (j = I, II, III) has width Wji = Wj/Nj.
Assuming that the shear between neighboring channels and the drag against
the connecting walls may be neglected, the total flowrate in the x direction
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is

Qx =

NI∑
i=1

qI(bi)WIi +

NII∑
i=1

qII(bi)WIIi +

NIII∑
i=1

qIII(bi)WIIIi. (3)

This assumption is acceptable for channels with a smooth variation of the
aperture, i.e. with a smooth variation of the flowrate along the y direction,
otherwise a linear momentum sharing between the neighbouring channels
due to tangential stress in the x − z plane is expected. Taking the limit as
Nj →∞, the width of each channel tends to zero and the discrete aperture
variation to a continuous one; then under ergodicity, and exploiting the pre-
vious relationships, (3) gives for the flowrate per unit width in the x direction
the expression

qx =
Qx

W
= II

px
12µ0

+

[
PII

2(1− n)m3/(1−n)

3(2n+ 1)µ
(2n+1)/(1−n)
0 p2x

+
n

2n+ 1
III

(
px

2n+1m

)1/n]
+

[
IIII

px
12µ∞

− PIII
2(1− n)m3/(1−n)

3(2n+ 1)p2x

(
1

µ
(2n+1)/(1−n)
∞

− 1

µ
(2n+1)/(1−n)
0

)]
,

(4)

where

II =

∫ b1

0

b3f(b)db; III =

∫ b2

b1

b(2n+1)/nf(b)db; IIII =

∫ ∞
b2

b3f(b)db;

(5)
PII = F (b2)− F (b1); PIII = 1− F (b2), (6)

in which f(b) and F (b) are the pdf and cumulative distribution function of
the aperture field, respectively.

3.2. Flow perpendicular to constant aperture channels

Consider now flow in the y direction perpendicular to constant aperture
channels, i.e. parallel to aperture variation (case 2, Figure 2b); the fracture
length is W and the applied pressure gradient is py = [p(0)−p(W )]/W , while
L is the fracture width perpendicular to gradient. Discretizing the fracture
model into N cells of equal length ∆y = W/N in series, each cell has width
L and constant aperture bi. By virtue of mass conservation, volumetric flux
Qy through each cell is the same; depending on the local aperture value, in
each channel the flow regime is either I, or II, or III, and the corresponding
flowrate per unit width qy = Qy/L is given, respectively, by the counterparts
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of Eqs. (2a), (2b), or (2c) upon substitution of the subscript x with the
subscript y; this is so neglecting the pressure losses due to the succession of
constrictions and enlargements. The number of cells in each regime is NI ,
NII , NIII , respectively, and the total length of the cells in each regime is WI ,
WII , WIII , with N = NI+NII+NIII and W = WI+WII+WIII ; the i-th cell
in each regime j (j = I, II, III) has length Wji = Wj/Nj. The total pressure
loss along the fracture, ∆py, can be expressed as the sum of pressure losses

in each cell, ∆pyi, as ∆py = [p(0)− p(W )] =
∑N

i=1 ∆pyi. This in turn yields
the mean pressure gradient py as

py =

NI∑
i=1

pyIi
WIi

W
+

NII∑
i=1

pyIIi
WIIi

W
+

NIII∑
i=1

pyIIIi
WIIIi

W
, (7)

where pyji is the pressure gradient in the i-th cell under flow regime j (j =
I, II, III). Taking the limit as Nj → ∞, the length of each cell tends to
zero and the discrete aperture variation to a continuous one; then under
ergodicity, and exploiting the previous relationships, Equation (7) gives for
the mean pressure gradient in the y direction the expression

py =

∫ b1

0

pyIf(b)db+

∫ b2

b1

pyIIf(b)db+

∫ ∞
b2

pyIIIf(b)db, (8)

where the pressure gradient for each infinitesimal cell of constant aperture,
i.e. pyj = pyj(qy, f(b), b1, b2, µ0,m, n, µ∞), can be expressed as a function
of the unknown flowrate per unit width qyI = qyII = qyIII = qy, and the
parameters describing the fracture geometry and the fluid rheology, upon
inverting Equations (2a), (2b), or (2c), written replacing the subscript x
with the subscript y. This allows deriving, albeit numerically, the flowrate
per unit width as a function of the applied pressure gradient and problem
parameters as done in (4) for channels in parallel. An alternative formulation
of the problem, using the same formalism adopted for flow parallel to constant
aperture channel, is presented in Appendix A and leads to the same results.

4. Estimate of flowrate and discussion

Different distributions are adopted for the aperture field, consistently with
earlier work on flow and transport in variable aperture fractures [12, 13]. In
the following, i) lognormal, and ii) gamma distribution are considered, the
latter covering for values of the parameter d > 3− 4 also the normal case.
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4.1. Lognormal distribution

Lognormal distributions for the aperture field were adopted by [12] and
[13]. Its probability distribution function is given by

f(b) =
1

bσ
√

2π
exp

[
− (ln b− ln bg)

2

2σ2

]
, (9)

where bg = 〈b〉 exp(−σ2/2) is the geometric mean, 〈b〉 the arithmetic mean,
and σ2 the variance of ln b. Utilizing Eqs. (4)-(5) with Equation (6) gives for
the factors Ij(j = I, II, III) and Pj (j = II, III) the following expressions:

II =
〈b〉3

2
exp(3σ2)

[
1 + erf

(
1√
2σ

(
ln

b1
〈b〉
− 5σ2

2

))]
;

III =
〈b〉(2n+1)/n

2
exp

(
(2n+ 1)(n+ 1)

2n2
σ2

)
×

×
[
erf

(
1√
2σ

(
ln

b2
〈b〉
− (3n+ 2)σ2

2n

))
− erf

(
1√
2σ

(
ln

b1
〈b〉
− (3n+ 2)σ2

2n

))]
;

IIII =
〈b〉3

2
exp(3σ2)

[
1− erf

(
1√
2σ

(
ln

b2
〈b〉
− 5σ2

2

))]
,

(10)

PII =
1

2

[
erf

(
1√
2σ

(
ln

b2
〈b〉

+
σ2

2

))
− erf

(
1√
2σ

(
ln

b1
〈b〉

+
σ2

2

))]
;

PIII =
1

2

[
1− erf

(
1√
2σ

(
ln

b2
〈b〉

+
σ2

2

))]
,

(11)

where erf(. . .) is the error function.
The Eqs. (4-8) of the flow rate are compared with that of a pure power-

law fluid (qpl), derived by [25], of parameters m and n i.e. for case 1

qx,pl =
n

2n+ 1

(
px

2n+1m

)1/n

〈b〉(2n+1)/n exp

(
(2n+ 1)(n+ 1)σ2

2n2

)
, (12)

and for case 2

qy,pl =
n

2n+ 1

(
py

2n+1m

)1/n

〈b〉(2n+1)/n exp

(
− (2n+ 1)(n+ 1)σ2

n

)
. (13)
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Figure 3: Flowrate and apparent viscosity for case 1 (flow perpendicular to
aperture variation) and lognormal aperture distribution. The thick red con-
tinuous curve refers to the flowrate (left axis), with the three contributions:
the low-shear rate regime qxI (continuous green curve), the mid-shear rate
regime qxII (dashed orange curve), the high-shear rate regime qxIII (dash-
dot black curve). The blue continuous curve refers to the apparent viscosity
(right axis) and the dashed lines refer to the power-law fluid. The param-
eters are n = 0.3, σ = 0.3,〈b〉 = 0.001 m, µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s,
m = 0.005 Pa sn.
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In Figure 3, flowrate and apparent viscosity versus the pressure gradient
are depicted, for lognormal aperture distribution and flow perpendicular to
aperture variation (case 1). The contribution of each single flow regime is
also represented, in order to quantify their influence on the total flowrate.
The presence of three possible flow regime, i.e. (i) low-shear-rate, (II) mid-
shear-rate and (III) high-shear-rate allows us to understand why for a certain
value of pressure gradient the two models sensibly differ. Clearly, qx → qx,pl
for µ0 → ∞ and µ∞ → 0. A similar behavior occurs for different aperture
distibutions and direction of flowrate (case 2).

The different trends between qx and qx,pl are showed in Figures 4a - 4f,
for lognormal distribution and case 1, with n = 0.3, 0.5, 0.6, µ0 = 0.5 Pa s,
µ∞ = 0.001 Pa s, and m = 0.005 Pa sn. Figures 4a, 4b, and 4c depict qx and
qx,pl versus px for fixed σ = 0.3; Figures 4d, 4e, 4f do so versus σ for fixed
px = 50 Pa m−1. It is seen that the flowrate for the truncated model is always
decidedly smaller than that associated with the pure power-law, except at
very low gradient pressure, where the opposite is true. The difference between
the two increases as the external pressure gradient and aperture variability
become larger or sufficiently small. Increasing the rheological parameter n,
the difference between the truncated power law and pure power law model
reduces.

In Figure 4a, the truncated power law model, compared with the pure
power law model for a fluid with n = 0.3, exhibits all flow regimes. Here, it is
possible to observe a very small low-shear-rate regime for lower values of pres-
sure gradient, a mid-shear-rate where the two models perfectly match, and
a high-shear-rate regime with a lower slope than the pure power law model.
Figures 4b and 4c depict the same behavior for different fluids, respectively
with n = 0.5, 0.6. In these configurations, the low-shear-rate regime is not
present, while the high-shear-rate regime is reached for higher values of pres-
sure gradient and the difference between the models is less marked.

Figures 4d, 4e, and 4f show how aperture variability σ influences the flow
rate for a given pressure gradient px and different fluids. For both models,
the flowrate increases with σ, as the parallel arrangement emphasizes the
importance of large-aperture channels asssociated with a larger variability;
the truncated model has decidedly smaller flow rates than the pure power-
law. The difference between the two models decreases as n increases, until
for n = 0.6 the difference is very small, and the two models provide identical
results in a large range of aperture variability.

Figure 5 shows instead the variation of flowrate with respect to pres-
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sure gradient, for case 2 (serial arrangement) and both the truncated and
pure power-law models. Figure 5a highlights the behavior of flowrate versus
pressure gradient, for n = 0.3, 0.5, 0.6, and fixed σ = 0.5. Here, a monotonic
increasing behavior occurs, with a perfect match between truncated and pure
power-law model for low values of pressure gradient. For higher values of the
gradient, the truncated model presents a lower slope with respect to the pure
power law, but this difference is less marked as n increases; in particular, the
truncated model assumes almost the same values, irrespective of the type
of fluid. For high gradient values, the truncated model has a lower flowrate
than the pure power-law, like in case 1. Overall, the difference between the
two models strongly depends on the type of fluid, as noted for case 1.

Figure 5b depicts the influence of aperture variability for σ = 0.1 to
0.5 and fixed n = 0.3. For lower values of pressure gradient, the truncated
and pure power-law model perfectly match, in particular for small values of
aperture variability. For higher values of pressure gradient, the slope for the
truncated model is still lower than the pure power-law, as in case 1. For
both truncated and pure power-law, the flowrate decreases with increasing
aperture variability as the serial arrangement emphasizes the importance of
small apertures.

4.2. Gamma distribution

A gamma distribution was adopted by Moreno et al. [12] to reproduce
the migration of contaminated water in fractured rock in the context of a
capillary tube model, and by Tsang et al. [13] for one-dimensional channels.
Its probability distribution function is given by

f(b) =
1

Γ(d)

bd−1

bdg
exp

(
− b

bg

)
, (14)

with the two parameters bg (geometric mean) and d. For larger values of d,
the gamma distribution tends to the normal one. The arithmetic mean and
the variance of b are given by 〈b〉 = bgd; σ2

b = b2gd = 〈b〉2/d. Utilizing Eqs.
(4)-(5) with Equation(6) gives for the factors PII , PIII and Ij (j = I, II, III)
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Figure 4: Flowrate for case 1 (flow perpendicular to aperture variation) and
lognormal aperture distribution. a-b-c) Flowrate vs pressure gradient for n =
0.3, 0.5, 0.6, σ = 0.3; d-e-f ) flowrate vs σ for n = 0.3, 0.5, 0.6, px = 50 Pa m−1.
The other parameters are 〈b〉 = 0.001 m, µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s,
m = 0.005 Pa sn. The dashed lines refer to the power-law relationships, the
continuous lines refer to the truncated power-law relationship.
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Figure 5: Flowrate for case 2 (flow parallel to aperture variation), lognormal
distribution. a) Flowrate vs pressure gradient for n = 0.3, 0.5, 0.6, σ = 0.5; b)
flowrate vs pressure gradient for σ = 0.1(0.1)0.5, n = 0.3. The other param-
eters are 〈b〉 = 0.001 m, µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s, m = 0.005 Pa sn.
The dashed lines refer to the power-law relationships, the continuous lines
refer to the truncated power-law relationship.
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the following expressions:

II =
〈b〉3

Γ(d)d3
γ

(
d+ 3,

db1
〈b〉

)
;

III =
〈b〉(2n+1)/n

Γ(d)d(2n+1)/n

[
Γ

(
d+

2n+ 1

n
,
db1
〈b〉

)
− Γ

(
d+

2n+ 1

n
,
db2
〈b〉

)]
;

IIII =
〈b〉3

Γ(d)d3
Γ

(
d+ 3,

db2
〈b〉

)
,

(15)

PII =
1

Γ(d)

[
Γ

(
d,
db1
〈b〉

)
− Γ

(
d,
db2
〈b〉

)]
;

PIII =
1

Γ(d)
Γ

(
d,
db2
〈b〉

)
,

(16)

where Γ(z) =
∫∞
0
e−ttz−1dt is the gamma function, γ(α, x) =

∫ x
0
e−ttα−1dt =

Γ(x)−Γ(α, x) the lower incomplete gamma function, and Γ(α, x) =
∫∞
x
e−ttα−1dt

the upper incomplete gamma function. The expression of the flowrate given
by Equation (4) with Eqs. (12) and (13) is compared with that of a pure
power-law (qpl) fluid of parameters m and n [25], i.e. for case 1:

qx,pl =
n

2n+ 1

(
px

2n+1m

)1/n(〈b〉
d

)(2n+1)/nΓ

(
d+

2n+ 1

n

)
Γ(d)

, (17)

while for case 2

qy,pl =
n

2n+ 1

(
py

2n+1m

)1/n(〈b〉
d

)(2n+1)/n[
Γ(d)

Γ(d− 2n− 1)

]1/n
. (18)

The latter expression is valid only for d > 2n+ 1. Figures 6 and 7 depict the
comparison between the truncated and pure power-law models, drawn for
both lognormal and gamma distributions, for case 1 and case 2, respectively.
Here, the two distributions are characterized by the same first two moments.
In particular, the parameter d of the gamma distribution is derived by the
variance of ln b, σ, previously converted in σb, i.e. [13]

σ2
b = 〈b〉2[exp(ln 10σ)2 − 1]. (19)

The two distributions differ only by the third and fourth moment. For σ =
0.1, the skewness is 0.47 for gamma distribution and 0.30 for lognormal, while
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kurtosis is 3.32 for gamma and 3.16 for lognormal distribution; for σ = 0.2,
the skewness is 0.97 for gamma distribution and 0.61 for lognormal, while
kurtosis is 4.42 for gamma and 3.68 for lognormal distribution.

Figure 6, drawn for the parallel arrangement, shows that the models with
the two different distributions and with TPL have a similar trend. The slope
of the qx − px relationship for the truncated model for both distributions is
lower compared with the pure power-law, for high and low values of pressure
gradient. The lognormal distribution consistently shows a lower flowrate
than the gamma distribution for the same pressure gradient and aperture
variability, due to the differences in the distribution shape; the difference in
flowrate between distributions increases with increasing aperture variability.

Figure 7, drawn for the serial arrangement, shows that for the same values
of pressure gradient, the pure power law model for lognormal distribution has
a higher flowrate than the gamma distribution, both for σ = 0.1 and σ = 0.2.
For intermediate pressure gradient, all distributions show a good agreement
of the flowrate for the truncated power law and for the pure power law model.
Again, the differences between the power law and the truncated power law
models become evident whenever the flowrate is in the regime controlled by
the high and the low shear rate plateaus.
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Figure 6: Flowrate for case 1 (flow perpendicular to aperture variation),
comparison between lognormal and gamma distributions. a) Flowrate vs
pressure gradient for σ = 0.1 (lognormal) and d = 18.37 (gamma); b) flowrate
vs pressure gradient for σ = 0.2 and d = 4.23. The other parameters are
n = 0.3, 〈b〉 = 0.001 m, µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s, m = 0.005 Pa sn.
The dashed lines refer to the power-law relationships, the continuous lines
refer to the truncated power-law relationship.
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Figure 7: Flowrate for case 2 (flow parallel to aperture variation), comparison
between lognormal and gamma distributions. For caption see Figure 6.

5. Deterministic aperture variation

We consider a constant aperture with a sinusoidal perturbation as “rough-
walled” fracture [37, 26], as depicted in Figure 8:

b(y) = 〈b〉[1 + δ sin(2πy/λ)] (20)

where 〈b〉 is the mean aperture, δ is the magnitude of the “roughness”, and λ
is the wavelength of the aperture oscillations. Upon comparing the limiting
aperture values b1, b2 for a given pressure gradient separating the different
flow regimes for the truncated power-law model, and the minimum, mean
and maximum aperture values bmin = 〈b〉(1− δ), 〈b〉, and bmax = 〈b〉(1 + δ),
it is seen that ten possible combinations arise, as reported in Table 1. The
standard deviation of the aperture distribution σb is related to the parameter
δ by

σb =
δ〈b〉√

2
. (21)

In the following we compare the behavior, in terms of flowrate for a given
value of the pressure gradient, of a deterministic and stochastic aperture
variation, both for flow parallel to constant aperture channels (case 1), and
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Figure 8: Rough-walled fracture profile adopted for the deterministic formu-
lation.

flow perpendicular to constant aperture channels (case 2). The lognormal
distribution is adopted for the stochastic variation, hence the quantities II ,
III , and IIII and PII , and PIII are those reported in Eqs. (10) and (11). The
same quantities, evaluated for the deterministic variation, are listed in Tables
2 and 3 of Appendix B for all the possible combinations presented in Table
1. In Figure 9a for case 1, a fluid with rheology index n = 0.5 is considered,
the roughness is taken to be δ = 0.2, and the same variance is considered for
both types of variation. The flowrate increases with the pressure gradient,
and the agreement between deterministic and stochastic model is good. The
comparison between the two models, for case 1, is also shown as a function
of σ in Figure 9b, for n = 0.5, and px = 30 Pa m−1. Here, the deterministic
model tends to predict higher values of the flowrate qx than the stochastic
approach for increasing values of log aperture standard deviation. Figure
10a depicts the comparison between deterministic and stochastic aperture
variation for case 2, with n = 0.3, and δ = 0.2. It is seen that the stochastic
variation tends to overestimate the flowrate for increasing pressure gradient,
while for lower values of px, the agreement between the two models is quite
good. This trend in confirmed by Figure 10b, drawn for px = 0.5 Pa m−1,
where the deterministic model returns flowrates increasingly lower than the
stochastic as σ increases.

6. Discussion and conclusions

We derived analytical models for flow of non-Newtonian fluids in uneven
channels simulating natural or artificial rock fractures. Our approach couples
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Figure 9: Comparison of deterministic (red dots) and stochastic approach
(blue line), for case 1 (flow perpendicular to aperture variation). a) Flowrate
versus pressure gradient, for δ = 0.2, and n = 0.5; b) flowrate versus standard
deviation for px = 30 Pa m−1, and n = 0.5. The other parameters are 〈b〉 =
0.001 m, µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s, m = 0.005 Pa sn.

Figure 10: Comparison of deterministic (red dots) and stochastic approach
(blue line), for case 2 (flow parallel to aperture variation). a) Flowrate versus
pressure gradient, for δ = 0.2 and n = 0.3; b) flowrate versus standard
deviation for px = 0.5 Pa m−1, and n = 0.3. The other parameters are
〈b〉 = 0.001 m, µ0 = 0.5 Pa s, µ∞ = 0.001 Pa s, m = 0.005 Pa sn.
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Combinations

1 b1 < b2 < bmin < bmax

2 b1 < bmin < b2 < bmax, 〈b〉 > b2

3 b1 < bmin < b2 < bmax, 〈b〉 < b2

4 b1 < bmin < bmax < b2

5 bmin < b1 < bmax < b2, 〈b〉 < b1

6 bmin < b1 < bmax < b2, 〈b〉 > b1

7 bmin < bmax < b1 < b2

8 bmin < b1 < b2 < bmax, 〈b〉 < b1 < b2

9 bmin < b1 < b2 < bmax, b1 < 〈b〉 < b2

10 bmin < b1 < b2 < bmax, b1 < b2 < 〈b〉

Table 1: Combinations of deterministic aperture variations.
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a four-parameter rheological model, the truncated power-law (TPL), with a
stochastic variation of the aperture field along a 1-D channel according to
a generic probability distribution function (pdf); three different cases are
considered including a deterministic variation of sinusoidal shape.

Starting from the solution valid for TPL parallel plate flow, which incor-
porates three possible flow regimes, the conductance of the channel is deter-
mined as a function of rheological fluid parameters, geometry, and the pdf
of the aperture distribution. Two limit cases providing an upper and lower
bound to the flowrate under an assigned pressure gradient are considered, the
parallel (PA) and serial (SA) arrangements, corresponding respectively to an
external pressure gradient perpendicular or parallel to aperture variation.

Results for the simpler, two-parameter power-law (PL) rheological model
provide the benchmark to discern the impact of the adoption of a more re-
alistic rheological model on the conductance. On one hand, the parallel
arrangement emphasizes the importance of large-aperture channels; here the
TPL has a smaller conductance than the PL, the difference increasing with
aperture variability and pressure gradient and decreasing with flow behavior
index. On the other hand, small apertures along the channels play a cru-
cial role in the serial arrangement; here results for the TPL and PL agree
for intermediate gradients and differ for larger/smaller ones, when the con-
ductance of the TPL is lower/higher than the PL. The differences between
TPL and PL again increase with aperture variability and decrease with flow
behavior index.

The impact of the specific pdf adopted for the aperture variation is mod-
erate, with the first two moments being equal. The difference in conductance
is an increasing function of aperture variability and depends on the third and
fourth moment of the distribution. Specifically, higher values of skewness and
kurtosis imply a smaller conductance for the parallel and a larger conduc-
tance for the serial arrangement. When a deterministic sinusoidal aperture
variation is considered, all trends valid for stochastic variations are confirmed.
Differences in conductance with stochastic aperture variation increase with
pressure gradient and aperture variability, and are of opposite sign depending
on the aperture arrangement.

Our model reveals the coupled effect of aperture heterogeneity and a re-
alistic rheological equation for non-Newtonian fluid flow in rock fractures,
a topic of interest in hydraulic fracturing, drilling, EOR, and environmen-
tal modelling and remediation. The relevance of rheological properties of
real fluids and of the stochastic nature of the fractures suggest a more in
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depth analysis of the coupling effects. Polymer flooding is often used for
EOR since the addition of polymers to the injected brine favors an improved
sweep, a reduction of fingering with a more stable displacement. Whilst EOR
polymers in a rheometer display Newtonian and shear thinning behaviour,
approximated by a TPL relationship, in the field polymers show a quite com-
plex behavior partially captured in the present model, dictated by the flow
geometry driven by fractures networks. Recovery mechanism in fractured
reservoirs (carbonate reservoirs usually are extensively fractured but show
a low porosity) is strongly influenced by the fractures, which show a well
different transmissivity than the matrix and carry most of the flow limiting
a large differential pressure and the efficiency of recovery. The nature of the
fluid and the characteristics of the fractures counteract this negative aspect.
As a matter of evidence, the TPL fluids show a reduction (increment) of
flowrate at high (low) shear rates for a given pressure gradient with respect
to the PL fluids. The relevance of this reduction/increment and its onset
are controlled by the Newtonian plateaus and by the fractures parameters,
mainly the average and the variance of the aperture of the fractures.

Results suggest to investigate further this coupling expanding the inves-
tigation to two-dimensional modeling of the aperture variation, inclusion of
local pressure losses, and adoption of yield-stress rheological models or more
complex models. A further element adding complexity to the model is shear-
thickening behaviour due to elongation of the polymer molecules, typical of
flow in capillary tubes with a sharp contraction [38]. At large flowrates, de-
pending on the fractures characteristics, an elongational contribution adds
up to the total pressure drop, showing a shear-thickening effect which can be
included in the present model.

7. Appendix A - Alternative formulation for serial configuration

The pressure gradient can be estimated as the inverse of Eqs.(2–2c). We
notice that while for a given pressure gradient the condition b < b1 (and
b1 < b < b2, b > b2) must be satisfied in order to guarantee a low-shear,
γ̇ ≤ γ̇1 (intermediate -γ̇1 ≤ γ̇ ≤ γ̇2 and high-shear - γ̇ ≥ γ̇2) regime, for a
given inflow rate qy the new conditions are

pyI(b) = q−1yI ≡
12µ0qy
b3

for b > b′1 ≡
√

6qy
γ̇1

; (22a)

pyII(b) = q−1yII for b′2 < b < b′1; (22b)
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pyIII(b) = q−1yIII for b < b′2 ≡
√√√√ qy
mγ̇n2
6µ∞

− a

4m2γ̇2n2

,

a =
2(1− n)m3/(1−n)

3(2n+ 1)

(
1

µ
(2n+1)/(1−n)
∞

− 1

µ
(2n+1)/(1−n)
0

)
,

(22c)

with b′2 < b′1. The inverse functions for the low-shear regime, pyI = q−1yI ,

and the high-shear regime, pyIII = q−1yIII , can be found analytically. At

intermediate regime the inverse function pyII = q−1yII can be found analytically
only for n = 1/2, 1/4, 1/6, while in general a numerical inversion is requested.
We notice that for n = 1/2 the inverse function has two real-valued positive
branches. This mathematical aspect could bring to hysteretic behaviour of
the flow in the fracture, with different paths in the space py−qy according to
the initial state: (i) a low pressure gradient regime and (ii) a high pressure
gradient regime for the same flow rate. However, upon introduction of further
dissipative effects, mainly due to expansion of the troughs, the hysteresis
should be mitigated and eventually cancelled. We will not pursue this aspect,
which requires an experimental validation, and we choose the branch of the
inverse function corresponding to the high pressure gradient regime. Taking
the limit as Nj → ∞, the length of each cell tends to zero and the discrete
aperture variation to a continuous one; then under ergodicity, and exploiting
the previous relationships, Equation (7) gives for the mean pressure gradient
in the y direction the expression

py =

∫ ∞
b′1

pyIf(b)db+

∫ b′1

b′2

pyIIf(b)db+

∫ b′2

0

pyIIIf(b)db. (23)

8. Appendix B - Quantities of interest for deterministic aperture
variation

For the deterministic, sinusoidal aperture variation of Section 5, Ta-
ble 2 reports the integrals II , III , IIII , while Table 3 shows PII , PIII for
the different combinations reported in Table 1. In both tables, consider

θi = arcsin

[
1
δ

(
bi
〈b〉 − 1

)]
.
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Combinations PII PIII

1 0 1

2
∣∣∣π − 2θ2

2π

∣∣∣ 1−
∣∣∣π − 2θ2

2π

∣∣∣
3

∣∣∣π − 2θ2
2π

∣∣∣ 1−
∣∣∣π − 2θ2

2π

∣∣∣
4 1 0

5
∣∣∣π − 2θ1

2π

∣∣∣ 0

6
∣∣∣π − 2θ1

2π

∣∣∣ 0

7 0 0

8
∣∣∣π − 2θ2

2π

∣∣∣ 1−
2∑

k=1

∣∣∣π − 2θk
2π

∣∣∣
9

∣∣∣π − 2θ2
2π

∣∣∣ 1−
2∑

k=1

∣∣∣π − 2θk
2π

∣∣∣
10

∣∣∣π − 2θ2
2π

∣∣∣ 1−
2∑

k=1

∣∣∣π − 2θk
2π

∣∣∣
Table 3: PII , and PIII for the deterministic case.
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