The propagation of gravity currents in a circular cross-section channel: experiments and theory

S. Longo¹[†], M. Ungarish², V. Di Federico³, L. Chiapponi¹, A. Maranzoni¹

Supplementary Material

1. Some details for the calculation of φ and Fr, and on the influence of β

The SW calculations use some integrals of the width function of the cross-section, in particular for the area ratio $\varphi = A/A_T$ and for Fr. We used analytical evaluations as follows.

Consider the half-width between y = 0 and the curve $y = \tilde{f}(z) = (2rz - z^2)^{1/2}$ for $0 \leq z \leq h \ (\leq 2r)$ (here lengths are scaled with h_0). The needed integrals are

$$I(h) = \int_0^h (2rz - z^2)^{1/2} dz = \frac{1}{2} \left[(h - r)(2rh - h^2)^{1/2} - r^2 \arcsin(1 - h/r) + \frac{\pi}{2}r^2 \right];$$
(1.1)

$$J(h) = \int_0^h (2rz - z^2)^{1/2} z dz = -\frac{1}{3} (2rh - h^2)^{3/2} + rI(h).$$
(1.2)

Let $r = H/\beta$, see Figure 1 in the main manuscript. We find that A = 2I(h), $A_T = 2I(H)$, and hence

$$\varphi = I(h)/I(H). \tag{1.3}$$

The following front condition

$$u_N = \frac{1}{R^{1/2}} Frh_N^{1/2}; \quad Fr^2 = \frac{2(1-\varphi)}{1+\varphi} \left[1 - \varphi + \frac{1}{hA_T} \int_0^h zf(z)dz \right], \tag{1.4}$$

yields

$$Fr^{2} = \frac{2(1-\varphi)}{1+\varphi}(1-\varphi+Q)$$
(1.5)

where

$$Q = \frac{J(h)}{hI(H)}.$$
(1.6)

It can be shown that, for a given β , Fr is a function of a = h/H. The typical behavior is displayed in Figure SM.1. Recall that $\beta = 2$ means that the channel is a full circle (of radius H/2), while smaller values of β mean circular sections of radius H/β . For a larger than the values shown in the lines of the figure, the solution of Fr is energetically unacceptable.

† Email address for correspondence: sandro.longo@unipr.it

FIGURE SM.1. Fr as a function of a = h/H for various β , circle $f(z) = [2(H/\beta)z - z^2]^{1/2}$. The dashed line is for the rectangular cross-section. Only values with acceptable physical dissipation are shown.

Figure SM.1 indicates that Fr(a) is quite insensitive to the value of β for $\beta \leq 1$. This result points out a useful property: the flow in a semi-circle is well approximated by that in a power-law width function channel, $f(z) = z^{1/2}$. The justification is as follows. For the circle, we use the expansion $(2rz-z^2)^{1/2} = (2rz)^{1/2}(1-z/(4r)+...)$ in the integrands of (1.1)-(1.2). We integrate term by term, and substitute $r = H/\beta$. With an expansion for small β , we find that the leading terms are

$$\varphi = a^{3/2}; \quad Q = \frac{3}{5}a^{3/2};$$
 (1.7)

and

$$Fr^{2} = \frac{2(1-a^{3/2})}{1+a^{3/2}}(1-\frac{2}{5}a^{3/2}).$$
(1.8)

We see that β cancels out from these first-order approximate expressions. The relative error due to the neglected terms is smaller than 0.15β for φ in (1.7), and about $0.25a^{3/2}\beta$ for Fr in (1.8). The approximate results (1.7) and (1.8) for the circle are the exact results for φ and Fr in a power-law $f(z) = z^{1/2}$ channel. See §4 in Ungarish (2013).

The approximation (1.8) is indeed in very good agreement with the exact calculation of Fr for $\beta \leq 1$: in Figure SM.1 the exact line for $\beta = 0.1$ cannot be distinguished from one obtained with (1.8). Furthermore, the differences between the lines $\beta = 1$ and 0.1 is small. The representation of the semi-circular boundary by the power-law $(2rz)^{1/2}$ approximation is essential in the derivation of the self-similar flow results.

Rigorously, the $(2rz - z^2)^{1/2}$ width function is incompatible with t^{γ} propagation, while $(2rz)^{1/2}$ is (see Zemach & Ungarish, 2013). Since the self-similar current is very thin, $z/r \ll 1$, the approximation is well justified.

2. The relative error in predicting the velocity of the reflected bore and the gravity current front velocity

The propagation of gravity currents in a circular cross-section channel

FIGURE SM.2. The relative error in predicting the velocity of the reflected bore in the lock as a function of the initial Reynolds number of the current (left panel) and of the non dimensional group $Re_0(h_0/x_0)$ (right panel).

FIGURE SM.3. The relative error in predicting the gravity current front velocity as a function of the initial Reynolds number of the current (left panel) and of the non dimensional group $Re(h_0/x_0)$ (right panel). Filled symbols refer to the long lock experiments, empty symbols refer to the short lock experiments.