INTERPORE

Session MS4.8 Non-Newtonian fluids in permeable media: rheology, modeling, and applications poster ID 165

Gravity-driven flow of Herschel-Bulkley fluid in a fracture and in a 2D porous medium

Vittorio Di Federico^a, Sandro Longo^b, Stuart E. King^c, Luca Chiapponi^b, Diana Petrolo^b and Valentina Ciriello^a ^a Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Viale Risorgimento, 2, 40136 Bologna Italy. ^b Dipartimento di Ingegneria e Architettura (DIA), Università di Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy. ^cSchool of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, Scotland.

e-mail: vittorio.difederico@unibo.it

1. Implications of fluid rheology on flow in fractures and porous media

The behaviour of Herschel-Bulkley fluids flowing in a narrow channel (a fracture) has not been investigated to the same extent as flows in wide channels, and deserves an in-depth analysis due to the numerous practical applications of the process, such as polymer processing, heavy oil flow, gel cleanup in propped fractures, drilling processes.

Rheological Models

A practical example: drilling fluids

There are several different types of drilling fluids, based on both their composition and use. The models of most interest in drilling fluid technology are the Bingham plastic, power law and Herschel-Bulkley (HB). In many cases (e.g., NAFs and clay-based WBMs) the HB equation is preferred to power law or Bingham relationships because it results in more accurate predictions of rheological behaviour at low shear rate.

Drilling fluid (mud): in mining engineering, it is used to aid the drilling of boreholes into the earth

Darcy's law, valid for Newtonian fluids, has been extended, with various methodologies, to power-law non-Newtonian fluids and experimentally validated [1-2]. However, even though the power-law approximation provides an accurate interpretation of fluid behaviour in several flow conditions, it does not cover other classes of fluids exhibiting yield stress. These are better described by models such as Herschel-Bulkley three parameters [3], Cross (four parameters, [4]), and Carreau-Yasuda (four or five parameters, [5-6]).

A theoretical model and its experimental validation for 2D flows of a Herschel-Bulkley fluid in a narrow fracture and in a porous medium is presented. The theoretical model is general, while computations and experiments refer mainly to a specific situation (the injected volume quadratic in time) where a simple self-similar solution is available. An expansion method has been applied to handle, with some restrictions, the general case of an injected volume which is power-law over time; the general method has likewise been experimentally validated.

4. The experiments

Present work

In order to validate the theoretical model, two series of experiments were conducted (i) in a Hele-Shaw cell with a small gap, simulating a fracture, and (ii) in the same cell with a larger gap and filled with glass beads of uniform size, reproducing a 2D porous medium.

Figure. A sketch of the experimental rectangular channel. (a) Front view, (b) side view, (c) a snapshot of the channel during Exp. B1 (the shaded area is the advancing current), and (d) a snapshot of the channel filled with glass beads during Exp. A1 (the dark area is the advancing current, the grev area is the porous medium not vet reached by the current)

Rheometry of the fluid

Most measurements were conducted with a parallel plate rheometer (DSR Anton Paar Physica MCR 101), and with a strain-controlled rheometer (coaxial cylinders Haake RT 10 RotoVisco). In order to limit the slip, the surfaces of the cup and of the rotor were roughened with strips of Sellotape, the surface of the plates were roughened with sand paper P-60 glued on the smooth surface.

Figure. (a) Experimental shear-stress shear-rate curves for three fluids Carbopol 980 0.08: 0.10: 0.14% Measurements with the coaxia cylinders rheometer. (b) Experimental shear-stress shear-rate curves for Carbopol 980 0.10%. Measurements with the plane plate rheometer

Figure. The graphs show (a) the front position x_N/η_e as a function of dimensionless time t for all tests. The three bold lines represent the perfect agreement with theory for the three different fluids used in the experiments; (b) the dimensionless profile of the current at different times for Exp. B3

2. Model description for free-surface flow in a narrow fracture

HB model for a shear thinning/thickening fluid with yield stress:

 $(\tau = (\mu_0 \dot{\gamma}^{n-1} + \tau_p \dot{\gamma}^{-1}) \dot{\gamma}, \quad \tau \ge \tau_p$ τ = stress; \dot{v} = strain rate. $\dot{\gamma} = 0$, $\tau < \tau_p$ μ_0 is the consistency index and represents a viscosity-like parameter; τ_p is the yield stress of the fluid; n = 1 Bingam is the fluid behavior index.

For free-surface flow through a narrow fracture of width Ly:

 $\left(\frac{\partial u}{\partial y}\right)$

 $\tau_{xy} \ge \tau_p$

 $\tau_{xy} < \tau_p$

The velocity y(x, y) in the x-direction must satisfy

where τ_{xy} represents the cross gap stress

 $1 + \tau_p \left| \frac{\partial u}{\partial y} \right|$

 $\dot{\gamma} = 0$,

and v is the cross gap direction.

20 40 60 80 100

0

20 40 60 80 100

3. Self-similar solution

For $\alpha = 2$, a velocity scale given by $\left(Q/L_y \right)^{1/2}$ arises, and a self-similar solution of the form $h = tf(\eta)$, with $\eta = x/t$, yields:

$$f - \eta f' = -\delta \left[f |f'|^{\frac{1}{n}} \left(1 - \frac{\kappa}{|f'|} \right)^{\frac{n+1}{n}} \left(1 + \left(\frac{n}{n+1} \right) \frac{\kappa}{|f'|} \right) \right]',$$
$$\int_{0}^{\eta_e} f(\eta) \,\mathrm{d}\eta = 1.$$

where $\delta = (L_{\nu}\Omega/Q)^{1/2}$ is the ratio between the two velocity scales. This system admits a simple solution, namely a linear profile for $f(\eta)$ [7]. Supposing a solution in the form $f(\eta) = A(\eta_e - \eta)$, for some constant A > 0 and $\eta_e > 0$, it is possible to obtain:

$$\eta_e = \delta A^{(n+1)/n} \left(1 - \frac{\kappa}{A}\right)^{(n+1)/n} \left[1 + \left(\frac{n}{n+1}\right) \frac{\kappa}{A}\right], \quad \eta_e = \sqrt{\frac{2}{A}}.$$

Eliminating η_e gives one non linear equation to solve for A.

2D flow in a porous medium

The self-simila

The case of flow through a porous medium requires the formulation of the equivalent Darcy's law for a HB fluid, which may be written:

$$d\nabla p = \chi \tau_p + \beta \mu_0 \left(\frac{\bar{u}}{d}\right)^n$$

where d is the diameter of the grains, ∇p the pressure gradient, τ_n the vield stress. n the flow behavior index. \bar{u} the darcian velocity and γ and β are coefficients. Under the relevant shallow water approximation and under the constraint $|\partial h/\partial x| > \kappa_n$, the evolution equation is

$$\frac{\partial h}{\partial t} = -\delta_p \frac{\partial}{\partial x} \left[h \left| \frac{\partial h}{\partial x} \right|^{\frac{1}{n}} \left(1 - \kappa_p \left| \frac{\partial h}{\partial x} \right|^{-1} \right)^{\frac{1}{n}} \right]$$

r solution $h = tf(n)$ and $f(n) = A_p(n_{cm} - n)$

 $= \delta_p^2 (A_p - \kappa_p)^{2/n}, A_p \eta_{ep}^2 = 2.$

For given values of κ_n and δ_n , it is possible to solve the first equation numerically in the unknown A_n and then to compute η_{en}

 Cristopher, R. H. & Middleman, S. 1965 Power-law ow through a packed tube. Ind. Eng. Chem. Fundam. 4, 422-427. 	References
[2] Bartelta, A. & de B. Aives, L. S. 2014 On Gill's stability problem for non-Newtonian Darcy's flow. Int. J. Heat Mass Tranefr 70, 799-768. [3] Herschel, W.H. A. Buildey, P. 1296 Konsistenzreasourper von Garmi-Benzolbasingen. Abioliz-Zetschrift 39 (4), 291-300. [4] Cross, M. M. 1965 Rheidogy of non-Newtonian fluids: a new flow equation for pseudoplastic systems. Journal of colloid science (5), 417- [6] Careau, P. J. 1972 Rheidogical equations from molecular network theorize. Transactions of The Society of Rheogy 16 (1), 99-127. [6] Yassuda, K.Y., Armstrong, R.C. & Cohen, R.E. 1981 Shaer-flow properties of concentrated solutions of linear and star branched polystynese (7) Direderico, V. Archetti, R. & Longo, S. 2012a Similari solutions for sinescularing of a two-dimensional non-Newtonian gravity current. J. Mon [8] Longo, S., Chiappori, L. & Di Federico, V. 2016 On the propagation of viscous gravity currents of non-Newtonian fluids in channels with variournal of Non-Newtonian Fluid Mechanics 225, 95-108.	437. . Rheologica Acta 20 (2), 163-178. .Newton. Fluid Mech. 177-178, 46-53. ing cross section and inclination.
(10) Di Federico, Y., Longo, S., Chiapponi, L., Archetti, R. & Cristilo, V., 2014. Radial gravity currents in voter sourced naitie septeminentia variationi. Journal of registrology 319: 260-247. (10) Di Federico, Y., Longo, S., Chiapponi, L., Archetti, R. & Cristilo, V. 10 Radial gravity currents in vertically gravity prometing brows media: theory and septeminentia variation. Journal of Politology 319: 260-247. (11) Di Federico, Y., Longo, S., Chiapponi, L., Archetti, R. 2013b Experimental verification of power-law non-Newtonian axisymmetric porcus gravity currents. J. Fluid Mech. 731, R2, 1-12. (12) Di Federico, Y., Longo, S., King, S. E., Chiapponi, L., Petrolo, D., Ciriello, V., 2017. Gravity-driven flow of Herschell-Buildey fluid in a fracture and in a 2D porcus medium. Journal of Fluid Mechanics, in press.	

