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ABSTRACT
Several environmental contaminants and remediation agents exhibit
rheological complexity. Crude oil and displacing agents in EOR operations
are rheologically nonlinear. These applications prompt the need for a
theoretical analysis of non-Newtonian flow in natural porous and fractured
media, considering gravity-driven and confined flows, different geometries
and diverse boundary conditions. We present a review of the results
obtained by our group concerning the modeling of power-law fluids, as this
constitutive law is amenable to self-similar solutions which may act as
benchmarks even for more complex rheology. First, closed form results
were obtained for gravity currents advancing in plane or cylindrical
geometry, deriving scalings for current length and thickness. Analogous
results were obtained for confined flows in various geometries; here,
scalings were obtained for pressure front position and pressure field.
Based on these benchmarks, the analytical models were refined introducing
two additional factors: medium heterogeneity and topographic control. The
inherent heterogeneity of natural media was modeled within a simplified
framework considering continuous variations of spatial properties.
Topographic control was introduced considering flows in porous channels of
different shapes. Both factors proved relevant for the spreading of gravity
currents as they influence the extent and shape of porous domain invaded
by the contaminant, or reached by the remediation agent.
Our theoretical results were validated against multiple sets of experiments,
conducted with different combinations of spreading scenarios and types of
heterogeneity or channelization. Two basic experimental setups were
employed, adopting either reconstructed porous media made of glass
beads, or Hele-Shaw analogues. To this end, existing Hele-Shaw analogies
for porous flow of power-law fluids were extended to heterogeneous media.
All scalings derived for the current front and thickness were confirmed by
our experiments, with an agreement between theory and experiments
improving with time. A comparison between the key exponents governing
the propagation of current or pressure front allows to determine the relative
influence of rheology, heterogeneity, and domain shape and geometry.
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• Power-law fluid constitutive equation in simple shear
m consistency index, n flow behavior index

• Darcy law for flow in p.m.
u Darcy velocity
p pressure
k,  permeability, porosity
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• Injected volume (all except dipole flow)

• First spatial moment (dipole flow)

• Velocity of the current 12  F
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Free surface flow
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Confined flow
• Maximum extension of the current 

• Thickness of the current

• Aspect ratio and average gradient

Results

Free-surface flow

• Plane (x) or radial geometry (r); time (t)
• Motion driven by density difference  between heavy intruding fluid and

light fluid saturating the medium; also channel slope if inclined
• Sharp interface
• Current height is thin compared to length and porous medium thickness
• Negligible surface tension effects
• Under previous assumptions, vertical velocities in the intruding fluid are

neglected, the pressure within is hydrostatic, ambient fluid is taken to be
at rest; the thickness h of the current is determined as h(x,t),or h(r,t)

• Current volume introduced at the system boundary V  t ( = 0
constant volume,  = 1 constant flux injection) or constant first spatial
moment Q (dipole flow)

• Zero height at the front xN (t)/rN (t) is maximum extension of the current
• Heterogeneity along vertical z given by k  z  1 ( = 1 homogeneous)
• Heterogeneity along horizontal x,r given by k  z ( = 0 homogeneous)
• Channel shape for plane geometry given by  parameter ( → ,

unbounded plane geometry)
Self-similar solutions govern the long-time evolution of the current. Scalings
for the current extension and thickness are

Confined flow

• Generalized geometry governed by d: 1 = plane, 2 = radial, 3 = spherical;
• r = generalized coordinate; t = time
• Motion driven by injection of a given fluid mass in an ambient fluid of given

ambient pressure pe
• Shear-thinning fluid (n<1)
• Advancing pressure front of position l(t)
• The pressure within the medium p is determined as p(r,t)
• Mass injected at the system boundary m  t

( = 0 constant volume,  = 1 constant flux injection)
• Heterogeneity along direction of propagation given by k  z ( = 0

homogeneous)

Self-similar solutions govern the long-time evolution of the pressure. Scalings
for the front position and pressure are
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• Injected mass

• Velocity of the current

• Position of pressure front

• Pressure increment
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