
Journal of Non-Newtonian Fluid Mechanics 201 (2013) 69–79
Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journal homepage: ht tp : / /www.elsevier .com/locate / jnnfm
On the axisymmetric spreading of non-Newtonian power-law gravity
currents of time-dependent volume: An experimental and theoretical
investigation focused on the inference of rheological parameters
0377-0257/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jnnfm.2013.07.008

⇑ Corresponding author. Tel.: +39 0512093750; fax: +39 0516448346.
E-mail address: vittorio.difederico@unibo.it (V. Di Federico).
Sandro Longo a, Vittorio Di Federico b,⇑, Renata Archetti b, Luca Chiapponi a, Valentina Ciriello b,
Marius Ungarish c

a Dipartimento di Ingegneria Civile, Ambiente Territorio e Architettura (DICATeA), Università di Parma, Parma, Italy
b Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Bologna, Italy
c Dept. Computer Science, Technion, Haifa, Israel
a r t i c l e i n f o

Article history:
Received 4 May 2013
Received in revised form 30 July 2013
Accepted 31 July 2013
Available online 8 August 2013

Keywords:
Gravity current
Viscous
Power-law fluid
Shear thickening
Box model
Rheological parameters
a b s t r a c t

We study axisymmetric gravity currents consisting of a constant or time-dependent volume of a power-
law viscous fluid propagating on a horizontal rigid plane below a fluid of lesser density. The intruding
fluid is considered to have a pure Ostwald–DeWaele power-law constitutive equation. First, the condi-
tions for buoyancy–viscous balance are examined, and the current rate of spreading is derived with a
box-model. An existing self-similar solution to the nonlinear differential problem for the influx of a con-
stant or time-variable volume of fluid is then described. Results from a number of experiments conducted
in a 30� sector with shear thinning, Newtonian and shear thickening fluids, and with constant and
increasing release rate, are presented and interpreted with the theoretical solution, obtaining globally
a very satisfactory agreement. The rheological parameters of the fluid, derived with a best fit procedure,
are compared to those measured independently with conventional rheometry. Confidence intervals are
evaluated for both estimates of flow behavior and consistency indices. Results support the feasibility
of controlled constant flux laboratory experiments with gravity currents in axisymmetric geometry to
infer the rheology of power-law fluids, especially at very low shear rates and with shear thinning fluids.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Gravity currents are ubiquitous in many natural and artificial
settings; they are essentially driven by the force of gravity acting
on density differences between the fluid; this effect is also referred
to as buoyancy. This buoyancy force pushes the fluid into horizon-
tal motion, and then may be balanced mainly by inertial forces, and
the current is then defined inviscid, or inertial; or by viscous forces,
thereby qualifying the current as viscous.

The study of viscous and inertial gravity currents has generated
a large amount of literature, including a number of books [1,2] and
review papers [3–6]. Classical studies of viscous horizontal gravity
currents under a lubrication approximation include Hoult [7], Did-
den and Maxworthy [8], and Huppert [9]. Their theoretical findings
were analyzed experimentally, among others, by Huppert and
Simpson [3], Maxworthy [10], and Didden and Maxworthy [8]. A
stability analysis was performed by Snyder and Tait [11].

During its evolution, a current may transition from the inertial
to the viscous regime (or the opposite, depending on the rate of
influx); this typically happens in several geophysical, environmen-
tal and industrial applications such as mudflows, lava flows, and
mold filling.

Several fluids of interest for these applications in the viscous re-
gime exhibit a marked non-Newtonian behavior, ranging from flu-
ids described adequately by a simple power-law model to more
complex behavior including e.g. viscoplasticity [12] and thixotropy
[13].

Different approaches were employed in the literature to analyze
the viscous spreading of non-Newtonian fluids over horizontal or
inclined surfaces. An analytical approach solving momentum and
mass balance equations via asymptotic expansions under the thin
current assumption was adopted to analyze the spreading of a
three-parameter Herschel–Bulkley fluid [14–18]. When a two-
parameter power-law model is considered, the spreading problem
is amenable to self-similar solutions: examples of this approach
are found in Pascal [19], Gratton et al. [20], Balmforth et al. [14],
Di Federico et al. [21], Sayag and Worster [22]. The release of a
finite volume of a power-law fluid over a denser inviscid one under
the influence of gravity and capillarity was analyzed by Pegler et al.
[23]. These solutions typically allow a prediction of both the current
rate of spreading and its profile in space–time. An alternative
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Fig. 1. Layout of the problem.
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approach is constituted by the box model, which couples a simpli-
fied geometric representation of the current with volume continuity
and balance of forces; this approach [1,2,24–27], allows capturing
the current rate of spreading but not its profile. Box modeling was
applied to a two-dimensional current of power-law fluid by Chow-
dhury and Testik [28], who compared it to an earlier self-similar
solution [21], finding that the box model captures the correct depen-
dence of the current front on time but overpredicts the position of
the front, except for very shear thinning fluids.

Experimental work to validate theoretical predictions concern-
ing gravity currents of power-law fluids was presented, among
others, in [28,29,22]. In all cases validation of existing analytical
formulations was limited to decidedly shear thinning fluids with
low flow behavior index n. Two-dimensional experiments per-
formed with an aqueous suspension of Kaolinite clay particles,
yielded flow behavior indices in the range 0.12–0.52 for constant
volume [29], and 0.15–0.33 for constant flux experiments [28].
Sayag and Worster [22] analyzed constant volume and constant
flux axisymmetric spreading of aqueous suspensions of xanthan
gum of 1% concentration by weight, deriving n = 0.164–0.175 (in
the manuscript, Sayag and Worster use 1/n as fluid behavior in-
dex); in their paper, they suggested that tests performed in axi-
symmetric geometry under constant flux release conditions could
be utilized to derive the fluid rheological properties in lieu of con-
ventional rheometers. Such an approach has been earlier suggested
by Piau and Debiane [30], who analyzed both plane (Bostwick) and
axisymmetric (Adams) consistometers; in these devices an analyt-
ical solution describing the transient slumping of a constant vol-
ume of power-law fluid on a horizontal base allows estimation of
fluid parameters. The use of Bostwick consistometers to infer the
rheological properties of yield-stress non-Newtonian fluids, com-
mon in the food industry, was discussed by Perona [31], Milczarek
and McCarthy [32], and Balmforth et al. [33].

In view of such applications, there is a need to extend the body
of experiments dealing with the slumping of axisymmetric gravity
currents, broadening the range of flow behavior indices examined;
to our knowledge, a thorough validation of existing self-similar
solutions for shear thickening fluid has never been presented in
the literature. Moreover, the overall quality of predictions needs
to be assessed by estimating the uncertainties associated with rhe-
ological parameters obtained with gravity current propagation, as
opposed to those derived with conventional rheometers.

This paper aims at answering these open questions by further
exploring the dynamics of gravity currents of power-law non-New-
tonian fluids in axisymmetric geometry. To this end, Section 2 first
presents a simple box model approach, capable of deriving the cor-
rect time dependence of the current rate of advancement; it then
recalls an existing self-similar solution to the problem based on
thin layer theory. Section 3 describes the experimental setup and
methodology adopted to conduct tests with Newtonian, shear thin-
ning, and shear thickening fluids in constant and variable flux re-
lease, illustrating: (i) predictions of rheological parameters via
the theoretical model; (ii) independent rheometric measurements
of fluid parameters. The two sets of estimates and their associated
uncertainties are discussed and compared in Section 4. A set of
conclusions (Section 5) closes the paper.
2. Theoretical results for axisymmetric viscous power-law
gravity currents

We consider a horizontal, axisymmetric gravity current of an
incompressible power-law non-Newtonian fluid of density q at
the bottom of an ambient fluid of density q � Dq (see Fig. 1).

We assume the current is changing volume in time according to
V = Qta where a (P0) and Q (>0, having dimensions L3T�a) are given
constants; note that here Qta is the volume per full circle, hence
Q = 2pq if the volume coefficient per radian q is given. The a = 0 case
gives the simple fixed-volume current, and the a = 1 case corre-
sponds to a current supplied by a constant-rate influx (say, by an
open tap). The a > 1 cases may represent a leak or eruption which
worsens with time. We assume that the source is located at the
center r = 0. In the present Section, first a simplified derivation of
the position of the current head rN(t) is presented via a box model;
then the self-similar solution to the problem provided in [16] is
recapitulated.

2.1. Box model

The ‘‘box model’’ is a simple tool for the investigation of gravity
currents. The approximation is of the volume-integral type: we
make some simplified assumptions on the behavior of the main
dependent variables (shape of the interface, dependency of the
speed of the current on r, etc.), then impose volume continuity
and momentum balance on the entire volume of the current. The
problem is thus reduced to a set of (usually two) ODEs, whose solu-
tion is straightforward. There is a large body of evidence (see for
example [2] and references therein) that this approximation pro-
vides useful results for the rate of propagation of the current,
and for the transition between the inertia-buoyancy to viscous–
buoyancy regimes. This motivates the use of this method in the
present investigation.

The first major simplification is that the current is a cylinder of
radius rN(t) and height hN(t). This is actually a similarity
assumption.

The volume continuity requirement for the box model is

1
2

r2
NðtÞhNðtÞ ¼ Vr ¼ qta; ð1Þ

where hN(t) is the current representative height and Vr = V/2p the
volume per radian; in the particular case a = 0 we can replace Vr

with q.
The following simplified behavior is assumed:

rN ¼ Ktb; hN ¼
2Vr

r2
N

¼ 2q

K2 ta�2b; ð2Þ

uN ¼ bKtb�1; uðr; tÞ ¼ uN
r

rN
¼ bt�1r; ð3Þ

where u(r, t) is the horizontal radial velocity, uN is the velocity of the
current front, and b and K are constants to be determined by the
solution.

The relevant forces can now be estimated as follows. The driv-
ing ‘‘buoyancy’’ force is the integral of @p=@r over the volume of
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the current. This effect is represented by the pressure force on the
periphery ‘‘dam’’ which bounds the current in the box (per radian)

Fb ¼
1
2
qg0rNh2

N; ð4Þ

where g0 = g(Dq/q) is reduced gravity.
The inertial forces are

Fi ¼ qhN

Z rN

0
uurr dr ¼ 1

3
qu2

NrNhN: ð5Þ

The power-law for the shear is of the form

szr ¼ m
@u
@z

����
����
n�1

@u
@z
; ð6Þ

with z vertical coordinate, szr shear stress, m and n indices of
fluid consistency and flow behavior; hence upon assuming
u(r, t) = uN(r, t)(r/rN(t)), the viscous force at the bottom (per
radian) is approximated by

Fv ¼ m
Z rN

0

u
hN

� �n

r dr ¼ 1
nþ 2

m
uN

hN

� �n

r2
N : ð7Þ

We consider a current dominated by viscous reaction to the
buoyancy driving (the inertial effects are negligible). Letting Fv = Fb

we obtain

un
N ¼

nþ 2
2m

qg0
hnþ2

N

rN
: ð8Þ

We substitute the postulated forms of hN(t), rN(t), uN(t) in terms
of K and b, and equate the powers of t and the coefficients. This
yields

b ¼ aðnþ 2Þ þ n
3nþ 5

; ð9Þ

K ¼ b�n=ð3nþ5Þ ðnþ 2Þ2nþ1 1
m

qg0qnþ2
� �1=ð3nþ5Þ

: ð10Þ

For n = 1 and m = l the classical results of the viscous Newto-
nian fluid box-model are recovered, in particular b = (3a + 1)/8;
see Eqs. (7.21) and (7.22) of Ungarish [2].

Also of interest is the critical value of a, ac, for which the current
preserves its viscous (or inviscid) regime for all t. The box model
provides this value. First we note that, according to (5) and (7),

Fi

Fv
¼ qðnþ 2Þ

3m
u2

NrNhN

uN=hNð Þnr2
N

: ð11Þ

Substituting the dependencies of hN, rN, uN on t, we find that the ra-
tio Fi/Fv behaves like C1tc, where

C1 ¼
ð2þ nÞ

3m
b2�nK1�n 2q

K2

� �nþ1

q;

c ¼ aðnþ 3Þ � 2ðnþ 5Þ
3nþ 5

;

ð12a;bÞ

and for b the result (9) was used. For n = 1 Eqs. (12a,b) give Eq.
(7.12) in Ungarish [2]. The value c = 0 corresponds to

ac ¼ 2
nþ 5
nþ 3

: ð13Þ

For a = ac, the ratio Fi/Fv is the constant C1 which in this case is
dimensionless and can be regarded as a Reynolds number (or the
inverse of a Julian number, see Maxworthy, [10]). This C1 may be
small or large, depending on the values q, g’, q, m, n.

For a < ac the ratio Fi/Fv decreases with time, and for a > ac this
ratio increases with time; for n = 1 the classical result ac = 3 is
recovered.
The solution developed here assumes that the gravity current is
in the viscous–buoyancy regime, i.e., that Fi/Fv is small. The other
relevant regime is the inertial-buoyancy one, i.e, Fi/Fv is large. Since
the ratio Fi/Fv is, in general, a time dependent monotonic function,
a gravity current is expected to change its regime of propagation. It
is convenient to define the time of transition between these re-
gimes as t1, when Fi/Fv = 1. In the present solution, we obtain

t1 ¼ ð1=C1Þ1=c �
ð2þ nÞ

3m
b2�nK1�n 2q

K2

� �nþ1

q

" #�1=c

: ð14Þ

Concerning the realistic behavior of the gravity current, this is a
quite rough estimate, because: (i) from the physical point of view,
the transition from one regime to the other is not sharp; there cer-
tainly is a time interval about t1 during which the buoyancy is coun-
terbalanced by both inertial and viscous effects. (ii) The calculation
in (14) contains the uncertainties of the box-model postulated
shape and velocity r-profile. Experience shows that, in general,
box models predicts accurately the value of b, but K deviates by typ-
ically 15–20% from measured values. We can expect a similar
behavior in the present case.

Finally, we recall that when a = ac no transition takes place and
therefore (14) predicts t1 ?1 in this limit.

Our viscous–buoyancy solution is thus relevant: (i) for t > t1

when a < ac, and (ii) for t < t1 when a > ac. When a = ac, our solu-
tion is relevant for all t, provided that C1 is small.

We note in passing that Sayag and Worster [22] used a time
dependent ‘Reynolds number’ as a counterpart to our Fi/Fv estimate
(cf. (4.1) in that paper with our (11), and recall that their n is 1/n
here). Due to a misprint in that paper, the time-decay power of that
ratio seems different from our c.
2.2. Self-similar solution

Sayag and Worster [22] (see also [34]) provide a full self-similar
solution to the propagation of a viscous axisymmetric gravity cur-
rent of a power-law fluid over a horizontal impermeable bottom,
under the hypotheses of thin current and hydrostatic pressure.

Momentum balance and the hydrostatic hypothesis yield

qg0
@h
@r
�mn

@u
@z

����
����

n�1
@2u
@z2 ¼ 0; ð15Þ

subject to the boundary conditions

uðz ¼ 0Þ ¼ 0;
@u
@z
ðz ¼ hÞ ¼ 0: ð16Þ

Integration of (15) with (16) yields the following expression for the
velocity u

uðzÞ ¼ � n
ðnþ 1Þ

qg0

m

� �1=n
@h
@r

����
����

1=n�1

� @h
@r

hðnþ1Þ=n 1� 1� z
h

� �ðnþ1Þ=n
� �

: ð17Þ

Local and integral mass balance give respectively

@h
@t
þ 1

r
@

@r

Z h

0
ruðzÞdz ¼ 0; ð18Þ

2p
Z rNðtÞ

0
rhðr; tÞdr ¼ Qta; ð19Þ

with boundary conditions at r = rN

h ¼ 0;
Z h

0
udz ¼ h

drN

dt
: ð20Þ
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Substituting (17) into (18) yields:

@h
@t
� n

2nþ 1
qg0

m

� �1=n 1
r
@

@r
rhð2nþ1Þ=n @h

@r

����
����
1=n�1

@h
@r

" #
¼ 0: ð21Þ

To solve Eqs. (19) and (21) with (20) we introduce the similarity
variable

n ¼ n
2nþ 1

qg0

m

� �1=n

Q ðnþ2Þ=n

 !�n=ð3nþ5Þ

rt�ðaðnþ2ÞþnÞ=ð3nþ5Þ; ð22Þ

and indicate with nN the value of n for r = rN.
Then the similarity solution is of the form

hðr;tÞ¼ nðnþ1Þ=ðnþ2Þ
N Q

n
2nþ1

qg0

m

� �1=n

Q ðnþ2Þ=n

" #�2n=ð3nþ5Þ

tðaðnþ1Þ�2nÞ=ð3nþ5ÞWðvÞ;

ð23Þ

with v = n/nN .
Substituting (22) and (23) in (19)–(21) yields

d
dv vW2nþ1=n dW

dv

����
����

1=n�1 dW
dv

" #

þ aðnþ 2Þ þ n
3nþ 5

v2 dW
dv �

aðnþ 1Þ � 2n
3nþ 5

vW ¼ 0; ð24Þ

W ¼ 0; W2nþ1=n dW
dv

����
����
1=n�1 dW

dv ¼ 0 for v ¼ 1; ð25Þ

nNða;nÞ ¼ 2p
Z 1

0
vWdv

� ��ðnþ2Þ=ð3nþ5Þ

: ð26Þ

Once nN is determined, the position of the current front is given by

rNðtÞ�R¼ nN
n

2nþ1
qg0

m

� �1=n

Q ðnþ2Þ=n

" #n=ð3nþ5Þ

tðaðnþ2ÞþnÞ=ð3nþ5Þ: ð27Þ

Upon comparing expression (27) with that derived by the box
model, it is noted that the box model provides the correct power
of t, and the correct parametric dependency of the coefficient,
but differs in the numerical value of the latter. Fig. 2 depicts the ra-
tio between the current extension estimated with the box model
and with the similarity solution; it is seen that the box model tends
to overestimate the current leading edge by a factor increasing
with n and slightly increasing with a. The overestimation is about
20% for the Newtonian flow, as earlier observed [2]. This is so since
the box model assumes a horizontal interface, while the exact
Fig. 2. Ratio between current spread-out estimated with the box model and exact
analytical solution. Circles indicate some experimental points of the present
dataset.
solution has a forward-inclined interface. Therefore, near the nose,
the exact solution predicts a larger shear hindrance than the box
model, and hence a smaller rate of spread-out. It is however ob-
served that for very shear thinning fluids with rheological index
below a threshold value (decreasing with increasing a), the box
model underestimates the propagation distance. This tendency
was already observed by Chowdhury and Testik [28] in plane
geometry, with the threshold value being approximately equal to
n = 0.25; here, due to the different geometry, the threshold is
around n = 0.20 and nearly independent from a. A possible expla-
nation of this inversion in behavior is as follows. The box model flat
hN actually reduces the buoyancy force Fb. In a real current, the
height over which the pressure pushes is larger than the averaged
hN, and hence the real Fb is larger than the prediction (4). When n is
not small, this reduction of Fb is more than counterbalanced by the
reduction of the shear imposed by the constant hN of the box mod-
el. However, when n is small, the shear is less sensitive to the thick-
ness, and therefore the box model underpredicts the real
propagation.

Eq. (24) is solved numerically for any value of a > 0 using, as a
starting condition for integration, the asymptotic analytical solu-
tion near v = 1 in the form of a Frobenius series

WðvÞ¼ a0ð1�vÞ
1

nþ2:

1þð1�vÞ
n ð15þ14nþ3n2Þþa�

nþ2
n

0 ð2þnÞ
1
n½nða�6Þþn2ða�2Þ�2a�

h i
ð3þnÞ ð20þ27nþ9n2Þ�ð2þnÞ

1
na�3

0 nðnþ2aþnaÞ
h i

2
4

3
5;

a0 ¼ðnþ2Þ
1

nþ2
aðnþ2Þþn

3nþ5

� � n
nþ2

;

ð28Þ

generalizing the expression (2.27) given for a Newtonian fluid in
Huppert [9], after correcting an error or typo. The correct expression
for n = 1 is

WðvÞ ¼ 3
8
ð3aþ 1Þ

� �1
3

ð1� vÞ
1
3 1� 1� 3a

6ð3aþ 1Þ ð1� vÞ þ Oð1� vÞ2
� �

:

ð29Þ

In the case a = 0 the problem is amenable to an analytical
solution,

WðvÞ ¼ n
3nþ 5

� �n=ðnþ2Þ nþ 2
nþ 1

� �1=ðnþ2Þ

1� vnþ1
	 
1=ðnþ2Þ

; ð30Þ

nN ¼
2p

3nþ5
n

3nþ5

� �n=ðnþ2Þ nþ2
nþ1

� �1=ðnþ2Þ C½2=ðnþ1Þ�C½1=ðnþ2Þ�
C½ð3nþ5Þ=ððnþ1Þðnþ2ÞÞ�

( )�ðnþ2Þ=ð3nþ5Þ

:

ð31Þ
3. Experiments

A thorough validation of the similarity solution is important in
view of the possible use of axisymmetric gravity current to deter-
mine rheological properties of complex fluids in lieu of, or in par-
allel to, conventional rheometers. A comparison between the
theoretical prediction of the front position and experimental re-
sults has been already carried out for Newtonian fluids [8,9,35]
in plane and axisymmetric geometry, and for shear thinning fluids
in air [22], but data on the behavior of currents of shear thickening
fluids are scarce. This is so not only because shear thinning behav-
ior is the most common deviation from Newton’s law, but also be-
cause, while shear thinning fluids are relatively easy to prepare and
handle, most known shear thickening fluids are suspensions sub-
ject to sedimentation and rapid variations of their rheological
properties. In addition, all available experiments with power-law
fluids refer to a constant-volume (a = 0) or constant-flux (a = 1)
release. A relevant set of experiments for Newtonian currents with
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variable inflow rate and 2D geometry is reported in [10]; no such
tests are available for non-Newtonian fluids.

In the following the results from four sets of experiments aimed
at validating the similarity solution are reported. The first set of
experiments was conducted with shear thickening fluids and con-
stant inflow rate (a = 1.0); the second set included experiments
with shear thinning fluids with constant and increasing inflow rate
(a = 1.0, 1.5, 2.0). A third set of experiments with Newtonian fluids
was performed to validate the overall procedure and set-up. Final-
ly, tests in critical inflow rate conditions were performed for New-
tonian and shear thinning fluids. All the fluids used in the
experiments were subject to an independent measurement of the
apparent viscosity via conventional rheometers, in order to com-
pare the rheological parameters thus derived with those yielded
by the gravity current measurements.

3.1. Rheometry

Shear thinning fluids used in controlled laboratory experiments
are often obtained adding organic additives to water or other New-
tonian fluids. Amongst the additives, carboxymethyl cellulose
(CMC) and xanthan gum are widely used because they are not
expensive and give stable mixtures with predictable rheological
characteristics (see [36]). Their rheological behavior is fully de-
scribed by a Cross or Carreau–Yasuda model, and reduces to the
Ostwald–DeWaele power-law model for intermediate ranges of
shear rates. For the present tests, a mixture of glycerol, water
and CMC (2% in weight) or xanthan gum (0.1% in weight) was pre-
pared and tested with a parallel plate rheometer (Dynamic Shear
Rheometer Anton Paar Physica MCR 101).

As a shear thickening fluid, a suspension of cornstarch in water
was prepared at a concentration of 100 wt.%. This corresponds to a
volume fraction of / = 32.3% assuming a density of 1550 kg/m3

[37]. The rheological behavior of the mixture was tested with a
classical coaxial cylinders shear rheometer (Haake Rotovisco
Fig. 3. Rheometric tests for different fluids used in the experiments. The bold blue lines in
indicate the least square regression for the high shear rate range. The dashed curves repr
interpretation of the references to color in this figure legend, the reader is referred to th
RT10), as the parallel plate rheometer could not be used due to
the tendency of cornstarch to sediment. The rheometric results
showed an evident dilatancy behavior except at very low shear
rates, where shear thinning behavior was recorded. A similar mix-
ture was analyzed in [38] with an extensional rheometer, showing
a behavior analogous to that observed in the present tests.

Fig. 3 shows the measured apparent viscosity as a function of
shear rate for four mixtures used in the present experiments:
two cornstarch suspensions in panels (a and c), a mixture of glyc-
erol, water and CMC or xanthan gum in (b and d) respectively. It is
evident that power-law behavior constitutes a local approximation
of the constitutive equation since the regression of the experimen-
tal data indicates different values of the coefficient and of the expo-
nent for different intervals of measured data. Hence the correct
interval of shear rate to be considered in the derivation of rheolog-
ical parameters depends on the shear rate experienced by the
tested gravity currents. As easily derived from the analytical solu-
tion described earlier, the magnitude of the shear rates for most of
the current body (excluding zones near the origin and the front
end) is less than 2 or 3 s�1. For this reason the fluid rheological
and consistency indices m and n were inferred from measurements
in the lower interval of shear rates (blue crosses). In this range, the
thin dashed lines indicate the prediction interval at the 95% of con-
fidence level (we assumed that the uncertainty is equal to the root
mean square of the residual between rheometric data and the
rhological power-law model). Note that the spatial variability in
shear rate experienced by the current during its propagation (in
the vertical and radial directions) adds further dispersion to exper-
imental values of m and n inferred from the experiments.

3.2. Experimental setup

The experiments took place at the Hydraulics Laboratory of the
University of Parma. A 30� sector of a flat PVC surface limited by
PVC walls was chosen to mimic a fully axisymmetric current since
dicate the least square regression for the low shear rate range, the dash-dot red lines
esent the prediction limit at 95% of confidence level in the low shear rate range. (For
e web version of this article.)
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the maximum pump discharge was not sufficient to reach the se-
lected values of the flux. This configuration enhances the resistance
encountered by the current, since a boundary layer develops also
along the vertical walls limiting the circular sector. However, since
the thickness of the current is very small as compared to the lateral
width, the surface of contact with the vertical wall is a small frac-
tion of that with the base, except for the early spreading stage
when inertia dominates the whole process anyway. The support
of the horizontal surface is in PVC and leveled through three
adjustable feet; an electronic spirit level (Digital Protractor
82201B-00), with an overall accuracy equal to 1/10�, granted the
horizontality of the plane of spreading. Two different syringe
pumps were employed: the first, built up in the laboratory, has
three 60 ml plastic syringes in parallel, and a piston moved by a
DC motor and positioned through an Utrasonic distance meter sen-
sor. A gear reduction allows a large variation of the flux, reaching a
maximum value of 3.9 ml/s with a relative accuracy 1%. This pump
was used for most tests performed with constant flux (a = 1),
including those with the cornstarch suspension having shear thick-
ening behavior. In this case, several devices were needed since the
cornstarch grains tend to settle out fairly quickly, altering the rhe-
ological behavior of the mixture. To minimize this phenomenon,
the syringe pump was directly connected to the injection hole
through a short pipe, and the experiment started immediately after
the refilling of the syringe. The second pump employed is a com-
mercial Teledyne ISCO 260D Syringe Pump, with a maximum
capacity of 266 ml, a flow accuracy of 0.5% of the set point and a
maximum flux of 1.78 ml/s. This pump can be controlled by a PC
with DAQ software in order to generate time increasing flux. The
ISCO pump was used to perform one of the experiments with con-
stant flux and all experiments with variable (increasing) flux. Note
that these tests were performed only with a shear thinning fluid,
since the shear thickening cornstarch and water mixture could
not be filled in the cylinder of the pump and could not flow into
the connecting pipe because of its small radius (1 mm internal
diameter).

The current spreading was recorded by a high resolution video
camera (1920 � 1080 pixels) working at 25 frames/s and with a
resolution better than 6 pixel�mm-1 in the experimental condi-
tions of the present tests. A non-linear transformation of the single
frames allowed to obtain a plane undistorted image, with the
transformation parameters computed recording a single shot of a
reference grid containing at least four points of known coordinates
in the current plane. Several algorithms were employed in se-
quence to detect the boundary of the current front and transfer
each frame to data files. If glares of light were absent in the cap-
tured images, as in experiments with cornstarch suspensions, a
software for automatic detection of the front of the gravity current
was quite effective and allowed the automatic analysis of all
frames (25 frames/s) and the extraction of the coordinates of the
leading edge. In other tests, glares of light were present in the
images, and a semi-automatic detection of the front was per-
formed extracting 2 frames/s. Since the detection of the advancing
current boundary is based on a gray level transformation with a
fixed threshold, considering the resolution of the video camera
used results in a point measurement uncertainty of 0.5 mm. For
each time step, the current radius rN was taken to be the average
of the local coordinate of the leading edge over the entire 30� sec-
tor (except 5 mm near the walls).

The setup is shown in Fig. 4 and the whole set of experiments
performed is listed in Table 1, which reports: the pump flow rate;
the type of test (constant or variable influx); the fluid used and its
rheology; the fluid density measured with the laboratory scale; the
values of the rheological parameters n and m measured directly by
rheometric tests (r) and estimated by analyzing experimental data
measured during the viscous spreading of constant flux gravity
currents (gc), as detailed in Section 3.3; the difference between
the two estimates.

3.3. Analysis of constant flux experiments

In this subsection we describe the constant flux experiments
(conducted with a full circle discharge ranging between 14.7 and
16.0 ml s-1) and discuss how they are used to derive the fluid rhe-
ological parameters via regression analysis, and the extent of asso-
ciated uncertainties. If the experimental apparatus is used as a
rheometer, the raw output data is the front end position as a func-
tion of time; with the acquisition protocol discussed in Section 3.2,
the front end position at each time is a spatial average over the cir-
cle sector. The model used to interpret the experimental data is
represented in the most general case by Eq. (27), which can be ex-
pressed in compact form as rN(t) = f(n, m, q, g’, Q, t, a). Assuming
further that the mass density q, the volumetric discharge Q and
the reduced gravity g’ are exempt from errors, the model parame-
ters reduce to n and m. The regression analysis is performed with a
grid search method, (i) allowing the two parameters n and m to
vary in a given interval, (ii) computing the theoretical value of rN

as a function of time, (iii) finding the values of the parameters that
minimize a measure of the error between theoretical model and
experimental data (the residuals); this measure is assumed herein
equal to the sum of the squares of the differences between the
experimental and computed front end position. To evaluate the
uncertainty associated with the estimate of rheological parame-
ters, we note that the sources of uncertainties lie in the measures
of time, t, and of the current front, rN, and in the goodness of the
model itself in reproducing the physical phenomenon. The mea-
surement error associated with time is extremely small (of the or-
der of the shutter speed, 1/500 s in the present experiments) and
decidedly negligible. The measurement error associated with the
current spread, if rN is evaluated as an average value along the
arc of advancement, is due to the camera resolution, to the lenses
and to the algorithm of detection of the boundary. Providing a high
camera resolution, adequate lenses and a smart algorithm, this er-
ror is also quite small, of the order of 0.5 mm in the present tests as
earlier specified; note however that if the current spread is mea-
sured along a single radius (e.g. using a laser sheet with a range fin-
der as in [22]), then the potential variability of the front end
position along the arc needs to be taken into account (the spatial
variability of the front end position, assumed equal to the sample
standard deviation, is reported in Fig. 5 for two of the present
experiments).

In general measurement uncertainties in t and rN can be safely
neglected since the associated error is very low in absolute value
and also compared to the uncertainty in the model, which is
dominant.

In practice, Eq. (27) is monomial and can be reduced to a linear
one by taking the logarithms of both sides. Then we assume that
the error is equal to the root mean square of the residual between
experimental data and the model. The usual rules for propagating
the variances (see, e.g., Bevington and Robinson [39]) allow the
evaluation of the variance of m and n and the computation of the
95% confidence limits reported in Table 1 for the rheological
parameters deduced from the constant flux experiments.

Fig. 5a and b shows an example of the regression analysis con-
ducted for a shear thinning (test #4) and a shear thickening fluid
(test #10). The upper panel in Fig. 5a and b shows the optimal
model regression (solid line) of experimental data, where the fit-
ting parameters are the flow behavior and consistency indices n
and m. The best-fit procedure is performed only on a subset of
experimental points fulfilling the thin layer approximation, which
is considered satisfied if the average ratio h=rN � Qta=pr3

N < 0:1. In
our experiments, the h/rN ratio decreases with time, and the



Fig. 4. (a) The experimental apparatus used for release with constant and time-increasing flux. (b) Snapshot of constant-flux experiment with shear thickening fluid, test #10
(top view).

Table 1
Set of experiments. The ambient fluid is air. q is the mass density of the current fluid, m and n are the consistency index and the fluid behavior index estimated through
rheometers (r), or through gravity current measurements (gc). The carrier fluid was water for cornstarch, glycerol and water for CMC and xanthan gum. A tiny quantity of ink was
added to increase the contrast between the current and the bottom wall. The 95% confidence limits are shown in parameters estimates. Bold characters indicate that the estimates
are statistically different, since their difference does not include zero.

Test # Full circle flow rate Q (ml s1) a
(.)

Fluid (rheology) q
(kg m�3)

m (r)
(Pa sn)

n (r)
(.)

m (gc)
(Pa sn)

n (gc)
(.)

m(r) �m(gc)
(Pa sn)

n(r) � n(gc)
(.)

2 16.0 1.0 cornstarch(shear thickening) 1200 0.13 ± 0.02 1.53 ± 0.06 0.18 ± 0.13 1.66 ± 0.06 �0.05 ± 0.14 �0.13 ± 0.09
3 14.7 1.0 cornstarch (shear thickening) 1200 0.59 ± 0.05 1.28 ± 0.18 0.55 ± 0.47 1.20 ± 0.08 0.04 ± 0.48 0.08 ± 0.16
4 15.0 1.0 CMC (shear thinning) 1022 1.33 ± 0.02 0.85 ± 0.02 1.50 ± 0.71 0.85 ± 0.04 �0.17 ± 0.72 0.00 ± 0.05
8 21.4 1.0 glycerol (Newtonian) 1259 0.54 ± 0.04 1.0 ± 0.02 0.89 ± 0.44 1.02 ± 0.06 �0.35 ± 0.44 �0.02 ± 0.06

10* 15.1 1.0 cornstarch (shear thickening) 1200 0.13 ± 0.02 1.53 ± 0.06 0.18 ± 0.02 1.50 ± 0.02 �0.05 ± 0.03 0.03 ± 0.06
11 3:0

ffiffi
t
p

1.5 xanthan gum (shear thinning) 1159 0.40 ± 0.03 0.68 ± 0.03

12* 0.24t 2.0 xanthan gum (shear thinning) 1159 0.40 ± 0.03 0.68 ± 0.03
14 3.72 � 10�4t 2.5 3.5 xanthan gum (shear thinning) 1159 0.40 ± 0.03 0.68 ± 0.03
15 4.80 � 10�5t 3.0 4.0 xanthan gum (shear thinning) 1159 0.40 ± 0.03 0.68 ± 0.03
16 1.88 � 10�3t 2.13 3.13 xanthan gum (shear thinning) 1159 0.40 ± 0.03 0.68 ± 0.03
17 1.80 � 10�3t 2.0 3.0 xanthan gum (shear thinning) 1159 0.40 ± 0.03 0.68 ± 0.03
18 1.80 � 10�3t 2.0 3.0 glycerol, water (Newtonian) 1239 0.21 ± 0.04 1.0 ± 0.04
19 3.60 � 10�3t 2.0 3.0 glycerol, water (Newtonian) 1239 0.21 ± 0.04 1.0 ± 0.04
23 18.0 � 10�3t 2.0 3.0 glycerol, water (Newtonian) 1239 0.21 ± 0.04 1.0 ± 0.04
32 13.15 � 10�3t 2.13 3.13 xanthan gum (shear thinning) 1159 0.40 ± 0.03 0.68 ± 0.03

* It indicates the tests where video is available as supplementary material, http://dx.doi.org/10.1016/j.jnnfm.2013.07.
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position where that criterion becomes valid is represented in the
graphs by the dotted vertical line. A second characteristic time of
the spreading phenomenon, represented by the vertical dash-dot-
ted line in the upper panel of Fig. 5a and b, is determined by the
balance between inertial and viscous forces. The ratio between
these forces is of O(1) at the time t1 given by the box model’s
Eq. (14). It is noted that for constant flux experiments: (i) the
current transitions to the viscous regime before the thin layer

http://dx.doi.org/10.1016/j.jnnfm.2013.07


Fig. 5. (a) Upper panel: position of the average of the leading edges over the 30�
sector for a constant flux gravity current of a shear thinning fluid (test # 4) versus
time. Symbols represent experimental data, the solid line represents the optimal
fitting of the theoretical model including only data in the thin-layer approximation
regime. The dashed line represents the model results with the values of m and n as
given by rheometric tests (sixth and seventh column in Table 1). The insert indicates
the difference between the measured rN and the model value of rN (symbols) derived
by optimal fitting, and the prediction interval at 95% of confidence level (dashed
lines). Lower panel: standard deviation of the leading edges over the 30� sector versus
time. The dash-dotted line marks the transition to the viscous–buoyancy regime, the
dotted line marks the transition to the thin layer approximation regime. (b) Same as
(a) except for a shear thickening fluid (test # 10).

Fig. 6. Experimental results for a variable flux release (tests #11 and #12) of a shear
thinning mixture of glycerol (60% in volume), water (40% in volume) and xanthan
gum (0.1% in weight) plus ink. The solid line represents the theoretical model (27)
valid in viscous–buoyancy regime with consistency and flow behavior indices
obtained by rheometric measurements. Shear thinning fluid n = 0.68 ± 0.01,
m = 0.40 ± 0.01 Pa sn. The dotted lines mark the transition to the thin layer
approximation regime, the dash-dotted line marks the transition to the viscous–
buoyancy regime.
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approximation is valid; (ii) the theoretical model, derived under
the thin layer approximation, interprets experimental results well
for a mean gradient much larger than 1/10, and can be considered
to hold even in a time range where inertia dominates, on the left
side of the dash-dotted line.

Fig. 5a and b also include (dashed straight line) the theoretical
curve corresponding to the values of n and m derived indepen-
dently from the rheometrical tests. It is noted that a good agree-
ment is found with experimental points, and the result is hardly
distinguished from the solid line representing the best fit; for the
remaining constant flux tests the agreement is still good.

The insert in the upper panel of Fig. 5a and b shows the afore-
mentioned difference DrN between the measured front position
and its model value calculated using the best-fitting rheological
parameters, and the corresponding prediction interval at 95% con-
fidence level.

Finally, the lower panel in Fig. 5a and b depicts the spatial stan-
dard deviation STD of the front position over the 30� sector as a
function of time; this quantity is seen to increase on average with
time, albeit not monotonously, attaining maximum values of
2–4 mm for total test durations of approximately 40 s. In fact, upon
observing the current spreading (see video #1 depicting test #10 in
Supplementary material) it is noted that the leading edge of the
current is not a perfect arc but exhibits several lobes continuously
appearing and disappearing, and advances with a sinuous shape
characterized by a limited standard deviation. Similar phenomena
were observed for laminar gravity currents intruding into a viscous
miscible ambient fluid [11] and were attributed to: (i) gravity,
when the nose of the current is elevated above the bottom surface
because of its irregularities and overrides a layer of ambient fluid
buoyantly unstable and (ii) viscous fingering akin to Saffman–Tay-
lor instability and occurring if the ambient fluid is more viscous
than the intruding fluid. The currents of the present tests are al-
ways much more viscous than the ambient fluid (air), hence only
buoyancy instability could be advocated; however, a series of pho-
tographs of the current nose with macrolens did not reveal any
nose elevation of the advancing current above the bottom, hence
instability due to gravity could not develop. In addition, the lobes
become less evident for faster currents, obtained upon increasing
the pump discharge. We are thus inclined to attribute the sinuosity
of the leading edge to heterogeneity in local conditions (cleanliness
and roughness) of the bottom surface, which modify the contact
angle and induce variability of the radial position of the current
edge. Fast advancing currents are less sensible to this effect and
thus exhibit lesser spatial variations in the position of the current
leading edge, as confirmed by the smaller values of STD obtained
for the shear thickening current of test #10 than for the shear thin-
ning current of test #4.

3.4. Analysis of variable flux experiments in subcritical influx regime

In this subsection we succinctly describe the experiments con-
ducted with increasing flux in subcritical regime with the Teledyne
ISCO 260D pump in order to simulate the conditions a = 1.5, 2.0
and 3.0 (tests #11, 12 and 17); all tests were performed with a
shear thinning fluid, as visible in video #2 showing test #12, which
is included in Supplementary material. Fig. 6 shows for two of
these tests (#11 and #12) the experimental results as a function
of time, the threshold of validity of the thin layer approximation
(dotted lines), and the time of transition t1 to the viscous–buoy-
ancy regime. It is noted that while both currents enter the thin
layer approximation regime after a short time (2–5 s), inertia
forces are dominant with respect to buoyancy forces in test #12,
for which the current reaches the balance at t1 � 26 s. Neverthe-
less, the analytical solution (27) was juxtaposed to experimental
data using the values of rheological parameters deduced from
the rheometric tests (solid lines in Fig. 6). In test #12 it is evident
that a transition between regimes of propagation occurred during
the recorded motion. It is noted that the overall fitting for test
#12 is relatively good, despite the fact that most experimental data
lie outside the domain of validity of the model.

3.5. Overview of test results

Fig. 7 shows experimental results in dimensionless form for the
subcritical tests with a < ac; length and time scales are given
respectively by h⁄ = Qn/(3n+a)(m/(qg0))a/(3n+a), t⁄ = (m/(qg0h⁄))1/n. In



Fig. 7. Experimental results for tests in subcritical conditions. Left panel: experimental data without coefficient; right panel: experimental data scaled with the coefficient nN

evaluated through the numerical model. Parameters n and m are those obtained through a best fitting procedure if applicable (i.e. if the thin-layer approximation and the
viscous–buoyancy regime hold), otherwise the values measured with rheometer listed in Table 1 are used. The straight line indicates a perfect agreement. For better
visualization the number of experimental points is reduced to 1/5.

Fig. 8. Same as Fig. 7 except tests in critical conditions.
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the left panel the inclination of the fitting lines should be 1:1 but a
vertical offset is expected since the dimensionless coefficient nN is
not included. The right panel shows the same data including also
nN evaluated through numerical integration of (26). The data col-
lapse fairly well with minor deviations from the perfect agreement
at early times. Fig. 8 is similar to Fig. 7, except that it shows exper-
imental results in critical conditions (not discussed in detail ear-
lier); in this case the collapsing is worse than in Fig. 7, but still
acceptable.

Globally the theoretical solution demonstrated a very satisfac-
tory agreement with experimental investigations conducted in
subcritical and critical conditions.
4. Discussion

In this section a comparison is drawn between rheological
parameters derived with conventional rheometers and gravity cur-
rents with constant flux. Preliminarly, we observe that upon juxta-
posing to the experimental data of all tests (see Fig. 5 for tests #4
and #10) the theoretical model (27) with the adoption of the val-
ues of n and m measured with the rheometers, a good agreement
was found (dashed line).

Best fitting of experimental results for CMC (test #4) revealed
shear thinning behavior with n = 0.85 ± 0.04, m = 1.50 ± 0.71 Pa�sn.
The parallel-plate rheometer yielded for the same mixture
n = 0.85 ± 0.02, m = 1.33 ± 0.02 Pa sn at a temperature T = 22.5 �C.
The flow behavior index computed by curve fitting is coincident
with the results of the strain-controlled rheometer, and the associ-
ated uncertainty is very low for both methods; the two values de-
rived for the consistency index differ to some extent, with the
value deriving from the gravity current being higher by 12.7%,
and having a much larger associated uncertainty; the difference
in the values of n and m estimated with the two methods is
n(r) � n(gc) = ± 0.05 and m(r) �m(gc) = �0.17 ± 0.72 with a 95%
confidence level; since zero is included in the interval for both
parameters we conclude that there is no statistically significant
difference in the two methods for estimating n and m.

A similar behavior is observed for a Newtonian fluid (test #8),
where both rheometers restitute unity for the fluid behavior index,
but the gravity current yields a larger viscosity than the rheometer.

The three tests conducted with cornstarch suspension (#2, #3,
and #10) yielded shear thickening behavior in all cases, albeit with
differences between tests, to be attributed to the specific nature of
the suspension which tends to be unstable and to sediment, ren-
dering the experimental conditions more difficult to reproduce.

For Test #2 the parameters deduced by means of the best fitting
procedure (n = 1.66 ± 0.06, m = 0.18 ± 0.13 Pa sn) differ quite
significantly from those obtained with the coaxial-cylinders
rheometer, which yielded for the same mixture n = 1.53 ± 0.06,
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m = 0.13 ± 0.02 Pa sn at a temperature T = 21.9 �C. It results
n(r) � n(gc) = �0.13 ± 0.09 and m(r) �m(gc) = �0.05 ± 0.14; hence
the 95% confidence limits for the estimate of flow behavior index
do not include zero, while those relative to the consistency index
do. The statistical difference is significant.

Results of Test #10 are somewhat similar to those obtained for
Test #2, in that rheological parameters and associated confidence
limits derived by means of conventional rheometer are identical
to Test #2, while the parameters deduced via gravity current are
n = 1.50 ± 0.02 and m = 0.18 ± 0.02; the former result is in excellent
agreement with that obtained with the strain-controlled rheome-
ter, while the consistency index differs significantly (38.5% higher)
and is statistically different at 95% confidence level (see Table 1).

Two factors combine to bring about this effect. The first one is
that best fitting of the rheometric experimental data (shear rate
vs shear stress) at low values of shear rate for shear thickening flu-
ids reduces the flow behavior index and increases the consistency
index (for shear thinning fluids it generally increases both param-
eters, see [22]), and shear stresses in experimental conditions are
on average moderately lower than those usually detected in the
rheometric tests. The second factor is the time and space variability
of the rheology of the cornstarch mixture during current spread-
ing; this phenomenon is likely due to sedimentation of cornstarch
grains (which was observed at the end of our tests), producing het-
erogeneity along the vertical.

Finally, the rheological behavior of the mixture was decidedly
different for Test #3, which yielded n = 1.20 ± 0.08, m = 0.55 ±
0.47 Pa sn as best fit parameters, to be compared with n = 1.28 ±
0.18, m = 0.59 ± 0.05 Pa sn measured at a temperature T = 22.7 �C
with the conventional rheometer. The rheological parameters
obtained with the two methods are in statistically significant
agreement, even though the confidence interval associated with
the gravity current measurement of the consistency index is larger.

On a final note, in the previous analysis it was assumed that the
temperature of the fluid is homogeneous and time-invariant and
also not significantly different from the temperature of the fluid
during rheometric tests. In general a further source of uncertainty
arises if these hypotheses are violated.
5. Conclusions

The following conclusions may be derived from our theoretical
and experimental study of horizontal axisymmetric spreading of
non-Newtonian power-law gravity currents:

1. A simplified expression for the speed of propagation and nose
position was derived via a box-model and compared with that
obtained from lubrication theory. Both approaches yield propa-
gation with t at the same power, but there is some difference in
the coefficient. The deviation between predictions calculated
with the two models depends on fluid flow behavior index
and type of release; the box model overpredicts the spreading
rate except for very shear thinning fluids with n < 0.20. The
box model also yields an estimate of the relevant forces acting
on the current and of the transition time between the inertial
and the viscous regime. It is concluded that the proposed box-
model solution can provide a fairly accurate description of the
viscous spreading of power-law gravity currents, usable for
quick estimations. We must keep in mind, however, that this
approximation lacks rigor, and its applicability outside the
range of parameters tested in this study cannot be assessed.

2. A previously-published analytical solution for gravity currents
in viscous buoyancy regime was validated with constant flux
experiments conducted with shear thinning, Newtonian, and
shear thickening fluids; these allowed to derive the rheological
parameters of the fluid with a best fit procedure. Globally a very
good agreement was found between experimental and analyti-
cal results, as demonstrated by: (i) the collapse of experimental
data for tests in subcritical conditions onto a single curve
expressing the theoretical solution in dimensionless form and
(ii) the inclusion of model estimates of the front end of the cur-
rent in the corresponding prediction interval at 95% confidence
level. However, we must keep in mind that the analytical
results are valid only when (1) the thickness ratio h/rN is small
(<0.1, say) and (2) the flow is in the viscous–buoyancy domain.
For a < ac, this is not satisfied in the initial stage, and hence the
good agreements can be observed only in the later stage of a
sufficiently long experiment.

3. The rheological parameters of all fluids used in the experiments
were measured independently with conventional rheometrical
tests, allowing a comparison between the two sets of
parameters.

4. A key point in the assessment of the goodness of the estimate of
rheological parameters via conventional rheometers or gravity
current propagation is the estimation of the associated error.
This was estimated for both sets of parameters in the form of
95% confidence limits.

5. The comparison between values of rheological parameters
derived upon calibrating the analytical solution against experi-
mental results and those derived via direct rheological mea-
sures yields results depending on the nature of the fluid, and
valid within the range of parameters tested in this study. For
shear thinning and Newtonian fluids, the two estimates of flow
behavior index coincide and exhibit a very low associated error,
while the consistency index derived by current propagation is
higher than that of the conventional rheometer, and has a larger
associated uncertainty; the difference in the estimates of the
parameters with the gravity current device and with classical
rheometers are statistically not significant at 95% confidence
level for all tests except Test #2 and Test #10, both with shear
thickening fluids. The difference in consistency index is linked
to the variability of the mean shear rate in current propagation
with respect to the range of shear rate used to approximate
with a power-law the shear-stress shear-rate diagrams
obtained with the rheometers. For shear thickening fluids, the
flow behavior and consistency indices estimated with the grav-
ity current may be lower or higher than that of the rheometer;
the error associated with flow behavior index is generally quite
low for both estimates, while that linked to consistency index
may be significantly higher, as already noted for the shear thin-
ning fluid. Results obtained for shear thickening fluid are influ-
enced by the specific nature of cornstarch suspensions used in
the experiments, as grains in the mixture tend to settle out,
altering the rheological behavior of the mixture and inducing
its spatial variability.

6. Our experiments confirm that axisymmetric gravity currents
are a viable alternative to conventional rheometry for the deter-
mination of rheological parameters of power-law fluids. The
different fluid nature has implications towards the practical fea-
sibility of the idea of using constant flux experiments as a rhe-
ometer. While shear thinning fluids similar to those adopted in
our experiments exhibit only spatial variability of the shear
rate, suspensions with shear thickening behavior display also
spatial variability in their composition connected to possible
particle sedimentation, evident in their two-layer structure.
Hence for shear thinning fluids constant flux experiments can
be used in lieu of rheometers to determine fluid parameters;
this is especially convenient at very low shear rates, since
shear-controlled rheometers, even the most sophisticated and
accurate, fail to obtain a correct response at very low shear rates
due to mechanical friction. For shear thickening fluids, on one
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hand the spurious effects described may limit the use of gravity
currents as rheometers. On the other hand, the use of gravity
current may prove useful to estimate the rheological parame-
ters for shear thickening mixtures including grains of relevant
size, not easily accommodated in a conventional rheometer.

7. Our work demonstrates the advantage of the wedge geometry:
reliable results were obtained with a significantly smaller
amount of fluid and pump discharge than necessary for similar
experiments with full-circle currents.
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