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Abstract The propagation of viscous, thin gravity currents of non-Newtonian liquids in hor-
izontal and inclined channels with semicircular and triangular cross-sections is investigated
theoretically and experimentally. The liquid rheology is described by a power-law model
with flow behaviour index n, and the volume released in the channel is taken to be propor-
tional to %, where ¢ is time and « is a non-negative constant. Some results are generalised to
power-law cross-sections. These conditions are representative of environmental flows, such
as lava or mud discharges, in a variety of conditions. Theoretical solutions are obtained in
self-similar form for horizontal channels, and with the method of characteristics for inclined
channels. The position of the current front is found to be a function of the current volume,
the liquid rheology, and the channel inclination and geometry. The triangular cross-section
is associated with the fastest or slowest propagation rate depending on whether & < «, or
o > a,. For horizontal channels, o, = n/(n+1) < 1, whereas for inclined channels, o, = 1,
irrespective of the value of n. Experiments were conducted with Newtonian and power-law
liquids by independently measuring the rheological parameters and releasing currents with
constant volume (o = 0) or constant volume flux (¢ = 1) in right triangular and semicircular
channels. The experimental results validate the model for horizontal channels and inclined
channels with « = 0. For tests in inclined channels with « = 1, the propagation rate of the
current front tended to lower values than predicted, and different flow regimes were observed,
i.e., uniform flow with normal depth or instabilities resembling roll waves at an early stage
of development. The theoretical solution accurately describes current propagation with time
before the transition to longer roll waves. An uncertainty analysis reveals that the rheological
parameters are the main source of uncertainty in the experiments and that the model is most
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sensitive to their variation. This behaviour supports the use of carefully designed laboratory
experiments as rheometric tests.

Keywords Gravity current - Similarity solution - Non-Newtonian - Power-law - Channel
shape - Laboratory experiments

1 Introduction

Gravity currents occur in several natural phenomena (e.g., mud flows and lava flows) and
manufacturing processes (e.g., coating processes and mould filling) and are characterised
by a large variety of physical conditions and approximations, as discussed in the reviews of
Simpson [1], Huppert [2], and Ungarish [3]. Models of gravity currents of Newtonian fluids,
in which buoyancy and viscous or inertial forces are balanced, have been successfully tested
in experiments by Huppert [4] and Didden and Maxworthy [5]. However, fluids exhibiting
purely Newtonian behaviour are an exception to the rule that most fluids in the environ-
ment, in biology, and in industrial processes behave as non-Newtonian fluids. Experimental
evidence from both field and laboratory studies demonstrates that some magmas behave as
non-Newtonian fluids at sub-liquidus temperatures due to gas bubbles and the presence of
crystals [6]. Numerous factors influence the propagation of magma flows, such as thermal
effects that cause an increase in the apparent viscosity eventually inducing a crustal layer
at the surface, accompanied by an increase in the flow resistance. However, the early stage
of lava eruption is not affected by these factors and can be confidently modelled within the
simplified framework of the present model [7]. Mudflows in surface and submarine settings
also exhibit complex rheological behaviour when treated with a single phase approach; for a
review, see Ugarelli and Di Federico [8]. Although the fluid rheology in these environmental
flows is often best described by a yield stress model, the relatively simple Ostwald-de Waele
power-law approximation is appropriate for describing the behaviour of fresh magma, fine
sediment-water mixtures, and mine tailings in the limit that the yield stress tends to zero [9—
11]. Gravity current models of power-law fluids have been developed by, among others, Pascal
[12], Gratton et al. [13], and Di Federico et al. [14] and experimentally tested by Chowdhury
and Testik [15], Sayag and Worster [16], and Longo et al. [17]. In some analyses, the esti-
mation of fluid parameters relies on the measurement of the slumping of a constant volume
of power-law fluid on a horizontal base [18]. The inference of non-Newtonian rheological
parameters by experiments with gravity currents is extensively analysed in [17]. Jacobson
and Testik [19] experimentally investigated the entrainment of ambient water into constant
volume release gravity currents of power-law fluid. In many cases, the flow of gravity cur-
rents is confined by channels [20,21], as in lava flows [7] and mud dynamics [22]. The shape
of the boundaries influences the velocity of the front and significantly modifies the overall
dynamics of the current. The goals of the present study are to develop solutions for gravity
currents of power-law liquids flowing in confined channels and to test them experimentally.
In Sect. 2, governing equations are derived for the cases of flow in a horizontal channel and
flow in an inclined rectilinear channel, caused by the release of a volume of liquid varying as
t*. Two subsections present self-similar solutions (horizontal case) and solutions using the
method of characteristics (inclined case) for semicircular and triangular channels. A third
subsection generalises some results to channels described by a power function. In Sects. 3
and 4, theoretical results are compared with laboratory experiments conducted at constant
volume or constant volume flux with shear-thinning, Newtonian, and shear-thickening (only
in a single test) fluids in three different channels. Section 3 describes the experimental setting
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and procedures, and Sect. 4 discusses the experimental results and presents an uncertainty
analysis. A set of conclusions in Sect. 5 closes the paper.

2 Formulation

Consider a non-Newtonian liquid with rheology parameterised by an Ostwald-de Waele
power-law relating the shear stress and the shear rate T = iy |y|"~!, where t is the shear
stress, [t the consistency index, n the fluid behaviour index, and y the shear rate. A liquid of
uniform density, p, is injected into a rectilinear channel of fixed cross-section inclined at an
angle g with the horizontal, and moves in an ambient fluid of negligible mass density (due to
the large density difference between the current and the ambient fluid). The channel geometry
is shown in Fig. 1, with the x, y, and z orthogonal axes oriented along the channel axis, across
the channel, and normal to the slope, respectively. The cross-section of the channel, with a
boundary described by the function d(y), is partly occupied by the current, which has a top
width of 2W (x, t) and a height ki (x, ) that is invariant in the span-wise direction. We assume
that buoyancy and viscous forces are balanced with negligible inertial effects and that the
motion is quasi-stationary and can be described by continuity and momentum balance with
null acceleration. Assuming that the streamlines are parallel to the bottom of the channel and
neglecting the effects of surface tension, the pressure in the liquid is hydrostatic and given
by

p = po+ pg(h —z)cos B, (1)

where py is the atmospheric pressure at the free surface and g is the gravitational acceleration.
We also assume that the extent of the flow, x (¢), is much larger than both 2 and W. Hence,
the motion is taken to be unidimensional along the x-axis and is described by a single velocity
component u(x, y, z, t). Under these hypotheses, the Stokes equation reduces to

ap 0Tyy 0Ty

_£+pr+ ay az

=0, (2)
where pfy is the volume force in the x-direction and tyy, 7., are the shear stresses. We also

consider wide cross-sections with 4 <« W, allowing one to neglect dty,/dy with respect
to dt;,/dz. Under this hypothesis, substitution of the expression for the shear stress of a

power-law fluid into Eq. (2) yields
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Fig. 1 A sketch of the current in the x—z and y— z planes
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where the assumption du/9z > 0 holds and the source term S, dependent on the channel
inclination angle B, is given by

ah
S:_@i(ﬂ—O) S:%gsinﬁ(ﬁ;ém. )

Equation (4) indicates that for a horizontal channel, the motion is induced by the slope
of the free surface, while for an inclined channel, it is assumed that the current is locally in
equilibrium, with gravity acting proportionally to the slope. The latter condition also requires
that tan 8 > 0h/0x and excludes the possibility that the effect of the free-surface slope is
comparable with that of the channel slope. The dynamic boundary condition at the free surface
requires the continuity of the shear stress in the liquid and in the ambient fluid, which can be
approximated by zero. The no-slip condition holds at the fixed boundary. Hence, Eq. (3) can
be integrated by imposing

ou

ul,=g =0, 3 =0, (%)
2 lz=h
such that we obtain
M(X v, 2, t) _ Sl/n . 1 [(h _ d)(ll+1)/n _ (h _ Z)(n-H)/n] . (6)
The local continuity equation for a one-dimensional current is
A 0
- £ =0, )
at ax

where A is the cross-sectional area occupied by the liquid, given in the symmetric case by
W (x,1)
A =2 [ then -aomiady, ®)
0

and Q is the downstream volume flux obtained by integrating the velocity over the cross-
sectional area. Substituting Eq. (8) into Eq. (7) yields

2W + 50 =0 )
at ox '
The global continuity equation yields
XN (D)
/ Adx = qt*, (10)

0

where ¢ > 0 and o > 0 are constants and ¢¢“ is the volume of liquid released. The case
o = 0 corresponds to instantaneous injection of a constant volume and « = 1 corresponds
to constant volume flux. At the front end of the current, the boundary condition of vanishing
height

hixn(),t]1=0 (11)

completes the mathematical statement of the problem for horizontal channels. However,
Eq. (11) cannot be satisfied for inclined channels as the order of the differential equation is
lower due to the assumptions made in Eq. (4). For the inclined case this produces a profile
ending abruptly at the head of the current, as noted by Huppert [23].
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2.1 Semicircular cross-section

For a semicircular cross-section of radius r, the boundary is given by d = r — (r2 — y*)!/2
and the current half-width by W = (2rh)'/2[1 — (1/2)h/r]'/?. Assuming that the current
is thin compared to the radius, i.e., & < r, it follows that the approximations d ~ y?/(2r),
W~ 2rh)Y/2,and A ~ 4 / 3(2rh*)1/2 hold. The relative error in the approximation of the
width is O (h/r); for h/r = 0.1 and h/r = 0.5 the relative error is equal to 2.6 and 15.5 %,
respectively. By integrating Eq. (6), the volume flux is obtained as

Wi(x,t) h(x,t)

Ox,1) =2 / dy / udz = B2V Jr SV K (n), (12)
0 d(y)
where

r(7/2+1/n)

where K (n) is anumerical factor and I"(-) is the gamma function. Substituting the expression
for the cross-sectional area into Eq. (10) yields

xn (1)
V2r / h32dx = gr®. (14)
0

4
3

2.1.1 The case B = 0 for a semicircular cross-section

For a horizontal channel with inclination angle 8 = 0, Eq. (9) yields

1/n 1/n—1
hl/z% — QKC P8 0 pS/2+1/n on oh —=0. 15)
ot 4 n dx ax ax
Introducing the length and time scales
. q 2n/(2a+5n) ﬁ 20/ (2a+5n)
=== — , (16)
NG rg
. q —2/Qa+5n) ﬁ 5/Qa+5n)
r=\—-= — , a7
NG 08
Equations (15) and (14) become
1/n—1
H1/287H — QKCi H5/2+1/n oH oH =0, (18)
oT 4 X X X
XN(T)
372
H3?dX = \TFT“, (19)
0
respectively, and the boundary condition (11) is given by
H[XN(T),T]=0, (20)
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where H = h/x*, X = x/x* and T = t/t* are nondimensional variables. The similarity
solution of Egs. (18) and (19) is expressed in terms of the similarity variable

n/(n+1)
24/2 2 2 3
.= (22 XT-Fe, p, = 22042 +3n 21
K. Sn+17
and the solution form
1 2 . n Fie(n+1)—n
HX, T) =yt Pey ), ¢ = L e = T 2700 ()
nN n+2

where ny is the value of 7 at the current edge X y, and the shape function, v, is the solution
of the nonlinear ordinary differential equation

1/n—1 !
(v ) = By 4 ety Py =0, y(h =0, (23)
in which the prime indicates d/d¢. The value of ny is obtained from Eq. (19), which trans-
forms into

—F3c

n/(n+1) 1
M(Kcﬁ) /w3/2d§ Py — 2(n+2)
0

nN = 24

3 4 Sn+7°

In Egs. (21)—(24), the factors Fi., F2., and F3. take different values depending on the
fluid rheology. For & = 0, Egs. (23) and (24) admit the following analytical solutions:

1/(n+2 2
(n + 2) o (ZFIC)W+ 1 g 29
n+1 3 ’

' nk3. 3F3. 3nF3.
VAN EN AT RS AR W T
8 K. n+2 2F,

rli+ s + soh | "
T+n 202
y T+n T 22+ ’ 26)

1 3
r (l + m) r [1 + 2(2+n)]

which, for n = 1, are equivalent to the expressions given by Takagi and Huppert [20]. For
a # 0, Eq. (23) must be integrated numerically. To do so, a second boundary condition is
obtained by generating an asymptotic solution near the current front in terms of a power
series [4], to yield

NN

2F \" 1
lc ) _ (27)

v — 1):—aob(1—§)b_l7 ao = (3b1/n T n+42

Figure 2 shows the shape function for different values of « and n, and the prefactor ny
as a function of « for different values of n. The shape function significantly increases for
increasing « and modestly decreases for increasing n, and the prefactor ny increases for
increasing n. The numerical result for « = 0 is confirmed by the analytical solution. From
Eq. (21), the front end of the current propagates as Xy oc T F1e, with a speed Uxy rhe1,
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Fig. 2 Left panel shape functions for semicircular horizontal channel sections for n = 0.5 (dashed line),

n = 1.0 (solid line), and n = 1.5 (dotted line). The thick dotted line represents the analytical solution for

n = 1.0. Right panel the prefactor ny as a function of « for n = 0.5 (dashed line), n = 1.0 (solid line), and
n = 1.5 (dotted line). For n = 1.0 and o = 0 the analytical solution ny = 2.9021 is reproduced

2.1.2 The case B > 0 for a semicircular cross-section

For an inclined channel with 8 > 0, Eq. (9) becomes
ah N K2 (pg\"" 5n+2)
ot 4 m 2n
where the factor K, is given by Eq. (13). The dimensionless form of Eq. (28) is
aH Kf(5n+2) n gl
H!T/n— —, 29
T 4 2n inp) X @9
while Eq. (19) is unchanged. The function H is constant along the characteristics given by

doh
( ﬁ)]/nhl+l/n 0’ (28)
ax

oH

dx KN2(5n+2)
T = gemH ", go(n) = === = (sin p)!/" (30)
and admits the solution
H — gc_"/("‘f‘l)Xn/(nJrl)Tfn/(n+l). G1)

Eq. (31) represents a profile abruptly ending at X », which can be smoothed by including
surface tension [23]. The condition Xy = 0 for T = 0, implicit in Eq. (31), can be changed
to Xy > Ofor T = 0 by introducing a time shift equivalent to a virtual origin; this is a local
effect without significant consequences for the current profile in the asymptotic regime. Note
that no further boundary conditions are required. Upon substitution of Eq. (31), the constraint
represented by Eq. (19) gives the length of the current as

2(n+1)

S5n+2 ") » ’

2m+1)

with the front end advancing with a speed Uy, o 72@=D0+D)/Gn+2) The current accel-
erates (decelerates) for« > 1 (¢ < 1). For @ = 0 and n = 1, the expressions given in
dimensional form by Takagi and Huppert [20] are recovered.

For o = 1, the volume flux, Q, is constant with 0 = ¢, the maximum height of the
current at X = Xy is equal to

2(n+1)

Hy, = [TKC(sin pH/m

—2n/(5n+2)
] ; (33)
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Fig. 3 The nondimensional 3.0
profile of the gravity currentina =TT —T—- oo — oo oo oo —
semicircular inclined channel b ]
(bold line) with o = 1.0, 20F ]
n =1.0,and Fr = 0.11. The
dashed line is the normal depth H F ]
and the dash-dotted line is the 10E ]
critical depth S

0.0

and the front end advances with a constant speed. The depth predicted by Eq. (33) may be
compared with the normal and critical depths of the channel for the same volume flux. The
normal depth is derived by balancing the gravitational force and tangential stress such that

"’1/}1 2n/(5n+2)
o = | 2 , (34)
K (pg sin )1/
yielding, in nondimensional form,
Hy, = [Ke(sin )!/n] 2"/ O" ) (35)

The critical depth, where energy is at a minimum for a given volume flux, is equal to

2 2\ /4
hc=( TxQ ) , (36)
64gr

where yx is the Coriolis coefficient.

A comparison between the maximum depth at the current front calculated with the present
model, as given by Eq. (33), and the normal depth yields Hx, > H,, Hx, = H,, or
Hy, < H,, depending on whethern > 2, n =2,0rn < 2.

The global Reynolds and Froude numbers of the current are computed for inclined channels
(B > 0) and constant volume flux (o = 1) as

Re — 8pU,% |:«/2rhni|n’ Fr— U,

2Un B 2ghy cos B ’
3x

where U, is the normal velocity. Figure 3 shows the nondimensional profile of the current
for n = 1.0 and Fr = 0.11. Similar results are obtained for other values of n (but are not
shown here).

(37

"

2.2 Triangular cross-section

The velocity distribution for laminar flow in a V-shaped cross-section with vertex angle 26
cannot be computed by assuming 97, /9z 3> 97y, /dy in the Stokes equation (2) for general
values of 6, but only for 20 >> 90°. For Newtonian liquids, Takagi and Huppert [20] adopted
a coordinate transformation and found a solution for the velocity field in terms of an infinite
summation of orthogonal cosine functions, deriving by integration an expression for the

volume flux in the form

0.137m* ,
R 9
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where m = tan6 and S is the source term defined by Eq. (4). For a power-law liquid, a
similar approach cannot be followed due to nonlinearity. Hence we resort to an empirical
approach and employ the experimental results of Burger et al. [11]. They investigated the
flow of various non-Newtonian liquids in open channels of different cross-sectional shapes
and expressed the relationship between the Fanning friction factor, f, and the generalised
Reynolds number, Rey, in fully developed laminar flow through the use of a shape factor
coefficient (the theoretical formulation given by Muzychka and Edge [24] yields similar
results). For a power-law liquid flowing in a right triangular section with 260 = 90°, their
experiments yielded

f =14.6/Rey, (39)
with 5
2gRsin B 8pU* ( R \"
f gz Ren 3 (ZU) ) (40)

where U = Q/A and R is the hydraulic radius. Hence, by substituting the expressions given
for f and Repy in Eq. (40) into Eq. (39) we obtain

1
0 = K, (n. myh®r 0/ g\n g 0 my _pGeamn__ mO 1\ @1
(1, , K4 (n, 1 +m)Hen/aen \ 146 )

where K;(n, m) is a coefficient incorporating the shape of the cross-section and the fluid
rheology. Forn = 1, K, is approximately equal to the value 0.137 given in Eq. (38). Eq. (41)
is thus strictly valid only for 26 = 90°. For other values of the vertex angle, 26, a factor solely
dependent on channel shape and with a numerical value different from 14.6 will appear in the
expression for the friction factor given by Eq. (39); this numerical factor must be determined
with independent experiments similar to those of Burger et al. [11]. This will, in turn, change
the numerical value of the coefficient K;(n, m) given by Eq. (41), but not its dependence on
m and n. Hence. in the following theoretical derivations K;(n, m) is assumed to be known,
regardless of its actual value.

2.2.1 The case B = 0 for a triangular cross-section

For a horizontal channel (8 = 0), substituting Eq. (41) into Eq. (9) with W = mh yields

1/n 1/n—1
h% _ ﬁ % i JGnt+1)/n dh =0, (42)
ot 2m \ ax

oh
ax
while Eq. (10) becomes

0x

xn (1)
m / h*dx = g1, (43)
0

because A = mh? and the boundary condition given by Eq. (11) holds. Introducing the length
and time scales

/(a+3n) ~ \ o/(a+3n)
x o (L) (i) , (44)
m 08
—1/(@+3n) ~ \ 3/(a¢+3n)
o= (L) (i) , 4s)
m 0g
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Equations (42) and (43) become, in dimensionless form,

dH K, 9 oH|Y"'oH
22t | gGnth/n |20 —)=o, (46)
oT 2mdX 0X 0X
Xn(T)
H?dX =T*, (47)
0

and the boundary condition is again given by Eq. (20). The similarity variable and the solution
form of the problem described by Eqs. (46) and (47), with Eq. (20), are given by

2m "M D 2)+2
n= mn x7r i F, = M, (48)
K[ 3n +4
n an+1)+n
HX,T) =y ™Ry ), ¢ = 1 = 2R 2T g)
nN 3n+4

where the shape function, v, is obtained by solving the differential equation

(w0 [y Iy Y — By 4 gy’ =0, (1) =0, (50)

and the prefactor is given by

—F3

1

K, n/(n+1) 5 n+2

NN = m Yodg , B3 = Imid (5D
0

In Egs. (48)—(51), the factors Fi;, F»;, and F3; depend solely on fluid rheology. For o = 0,
a closed form solution is derived as

) n MO g o\ 04D) (1 = gtV o) (52)
3n+4 n+1 |
2m\ /D) g3, AN\2ER /D) g\ 2P/ (n42)
nN = (Fz) ( n ) (n + 2)
1 2 2+n e
[ F . ’ 1 ’ (53)
l+n 24n l+n

where ; F7 is the hypergeometric function. For the case n = 1, Eq. (53) is equivalent to
the solution reported in dimensional form by [20]. For & # 0, the numerical integration of
Eq. (50) requires a second boundary condition near the current front, obtained similarly to
Eq. (27) as

b
Fr pn=1/n n 1
il (54)

, . bl gy = P =—
Y& —1)=—apb(l —¢) ,HO—(b(3n+2)_1 T n+2

Numerical values of the shape function and the prefactor ny for different values of & and
n are similar to the semicircular case. The front end of the current propagates as Xy oc 711
and advances with a speed Uy, o YA
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2.2.2 The case B > 0 for a triangular cross-section

In an inclined triangular channel with g > 0, Eq. (9) becomes

ah K, (pg)l/” Gn+1)
n

oh
ar  2m \ It N

(Sin ﬁ)l/n h(n+l)/n
0x

0, (55)

and Eq. (43) is unchanged. In nondimensional form, Eq. (55) is
0H K Gnt 1) on_
AT ~ 2m  n X
while Eq. (20) still holds. The solution is obtained with the method of characteristics as
_ K, 3Bn+1)
T 2m

(sin ﬂ)l/n H(n+1)/n 0, (56)

H = gt—"/(”+l)Xn/(n+l)Tfn/(n+l), g (sin IB)l/n . (57)

and the length of the current is given by

(n+1)/(3n+1) wn .
Xy = (2 g/
n+1

(58)

with the front end advancing with a speed Uy, oc 7@~ D@+D/Gn+D For ¢ = 1 (constant
volume flux), the maximum height of the current at X = X is equal to

YK, —n/(3n+1)
Hx, = (n2n ;t sm,Bl/”) , (59)

and the front end advances with constant speed. For « = 0 and n = 1, the solution given
by Takagi and Huppert [20] is recovered. The normal depth is given in dimensional and
nondimensional form by

~1/n n/GBn+1) —n/(Gn+1)
Y K
n= | . Hy = | = (sinp)!/" . (60)
K (pgsin B)l/n m
and the critical depth is
1/5
21 0°
he = ( 5 . (61)
gm

The Reynolds and Froude numbers of the current are computed for constant volume flux
(¢ =1)as

_8pU3[ mh, ]”7 _ U )

Re = — ="
mo L4U,(1 +m?) /ZghQ%Sﬂ

Hence, Hx, > H,, Hx, = H,, or Hx, < H, depending on whethern < 1, n =1, or
n> 1.

2.3 A generalisation for power-law channels

The previous results can be suitably generalised upon describing the cross-section with a
general power-law relationshipd = a |y/a ¥, where a is a length scale and £ is a prescribed
constant: k = 1, k = 2, and k — oo correspond to triangular, semicircular, and infinitely
wide rectangular sections, respectively. For k > 1, the current depth is much smaller than its
width and 97, /0z > 91y, /0y, as earlier hypothesised for semicircular sections. By using
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Table 1 Current propagation rates in horizontal and inclined channels of different shapes

Shape Reference Horizontal (8 = 0) Reference Inclined (8 > 0)
_ 3(n+ao)+2na 2a(n+1)43n
Narrow (k = 1/2) tp =576 tp 5o
2)+42. 1)+2,
V-shaped (k = 1) tp 2lnt2)4on tp 2lntl)tn
e _ 20(n+2)+3n 20(n+1)+3n
Semicircular (k = 2) tp 07 tp BT
a(n+2)+n a(n+1)+n
Rectangular (k — 00) GM i3 tp T

“GM” and “tp” refer to Gratton et al. [13] and this paper, respectively
For n = 1, these results are consistent with the data listed in Table I of Takagi and Huppert [21]

the same arguments for semicircular sections, for wide cross-sections (k > 1) the exponent
of time, proportional to the propagation distance, c, is given by

2ka +n(1 4+ k + ko)
C =
e T T k(B + 2n)
ak(n+1)+nk+1)

Ciw = 2kt D)tk D) for g > 0. (64)

, for B =0, (63)

In a narrow channel, the Stokes equation (2) simplifies, retaining only the gradient of the
shear stress 9ty /0y, which is the dominant term. By dimensional arguments, for propagation
in narrow cross-sections (k < 1), the exponent of time is

ekt Dtnktatl)
e T Y k2 +n)
a+nk+a+1)

L _adnktat) for 8 > 0. 66
Cin 1+n2+k or f > (66)

, for g =0, (65)

Note that ¢;y, (o, 1, k) = cin(o, n, 1/k). A summary of the propagation rates for different
geometries is listed in Table 1. In horizontal channels, the front end accelerates if o« >
(4 4+ n)/(2 + n) for V-shaped sections, a > (7 + 2n)/(4 + 2n) for semicircular sections,
and ¢ > (3 + 2n)/(2 + n) for wide rectangular sections. For generic power-law cross-
sections, accelerated currents are obtained for « > (2 + 2k +n)/(1 +k +n), k < 1, and
o > (1 43k + kn)/(2k + kn), k > 1. In inclined channels of any shape, the current front
accelerates if o > 1, decelerates if @ < 1, and advances with a constant speed independent
of the value of the fluid behaviour index n if « = 1. In horizontal channels, the front velocity
attains its maximum value for a triangular section (k = 1) when @ < o = n/(n + 1); in this
case the front is always decelerated. Conversely, if « > o, = n/(n + 1) the minimum value
of the front velocity is reached for a triangular section; here the front can be decelerated or
accelerated. Qualitatively similar results are obtained for inclined channels, except that the
critical value «, equals unity, irrespective of the value of the flow behaviour index n. Figure 4
shows the dependence of the exponent of time, ¢, on k for a shear-thinning liquid (n = 0.5)
for different values of « for horizontal and inclined channels, confirming the above findings.
The influence of the shape of the cross-section, parameterised by k, is larger in the interval
0 < k < 2. The results for different values of n (not shown here) are similar, indicating the
relatively minor influence of the flow behaviour index n on the propagation rates. The values
of a. for n = 1 are in agreement with those reported in Takagi and Huppert [21].
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Fig. 4 The time exponent ¢ (proportional to the propagation distance) as a function of k for a shear-thinning
liquid with n = 0.5 for different values of « for horizontal (left panel) and inclined channels (right panel)

3 Experiments

A series of experiments was performed at the Hydraulics Laboratory of the University of
Parma to test the theoretical formulation. Constant volume (¢ = 0) and constant volume
flux (¢ = 1) tests were conducted with Newtonian (n = 1), shear-thinning (n < 1), and
shear-thickening (n > 1) liquids, in horizontal (8 = 0) and inclined (8 > 0) channels with
different cross-sectional shapes. Three different experimental setups were utilised. The first
employed a 600 mm-long circular tube of polymethyl methacrylate (PMMA) with a radius
of 119 mm, which was cut along a meridian plane and supported with frames and adjustable
feet to ensure horizontality of the axis. This semicircular channel was used in experiments
with @ = 1 and B = 0. Another set of experiments, conducted with @ = 0 and 8 = 0,
and witho = O or 1 and B > 0, used a circular 2000 mm-long PVC tube with a radius of
74.5 mm, which was fixed to an aluminium rigid frame supported by adjustable feet. In a
third set of experiments, a 2000 mm-long aluminium profile with a triangular L-shaped 100
mm x 100 mm cross-section and a vertex angle of 90° was utilized, supported at both ends
with plastic frames equipped with adjustable feet. To explain some apparent inconsistencies
in the experimental results, the aluminium frame was covered with PVC in a limited subset
of experiments (see the Sect. 4). In all groups of tests, the inclination of the channel axis was
measured with an electronic spirit level with an overall accuracy of 0.1°. For tests involving
an instantaneous release of the liquid (@ = 0), a lock gate was installed at one end of
the channel, delimiting a reservoir having the same cross-sectional shape. The volume of
the liquid was estimated with a relative uncertainty of 1.5 % by weighing the mass that
filled the reservoir and dividing by the mass density. For tests with a constant volume flux
(e = 1), a syringe pump built in the lab, accurate to £1 % of the instantaneous volume
flux, delivered the liquid through a plastic tube. The position of the front end of the current
was detected using either a high-resolution digital video camera or a digital camera with
images taken approximately 600 mm above the current, thus achieving a spatial resolution of
~ 3 pixels/mm. To cover the entire extent of the current with adequate spatial resolution, the
video camera and one or two synchronised photo cameras were installed with overlapping
fields of view, even though, for many tests, only the images far from the source were of interest.
To identify the current boundary, the resulting images were processed using software that
restituted the pixel positions in a reference grid with an overall estimated uncertainty of
+1.5 mm. In the experiments with the lock gate, the start time was detected by observing the
video images. In the other tests, the start of the syringe pump was controlled by a personal
computer; simultaneously, an LED in the field of view of the video camera was turned on and
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Fig. 5 a Schematic of the experimental apparatus. b A snapshot of a current propagating in a semicircular
horizontal channel with constant volume flux. The image refers to Test 2

an electric signal for acquiring an image was sent to the photo cameras. The video camera
acquired 25 frames per second (usually undersampled to 1 frame per second or less) and the
photo cameras acquired 1 frame per second or less, depending on the velocity of the front end
of the current. The uncertainty in time measurement was assumed to be equal to 1/50 s for the
video camera and negligible for the pictures taken by the photo cameras. The liquids used in
the tests were prepared by gently mixing glycerol, water, and ink to obtain a Newtonian fluid,
and by adding xanthan gum to obtain a shear-thinning fluid. The shear-thickening liquid used
in a single test was a mixture of water (40 % by weight) and cornstarch (60 % by weight).
The rheological behaviour of the liquids was tested with a coaxial cylinder shear rheometer
(Haake Rotovisco RT10) and a parallel plate rheometer (Dynamic Shear Rheometer Anton
Paar Physica MCR 101), both strain-controlled rheometers. The flow behaviour index and
the consistency coefficient were obtained by fitting an Ostwald-de Waele power-law to the
data measured with the rheometers. The real rheological behaviour of the liquid is generally
better described by a Cross or Carreau—Yasuda model, which reduces to the power-law
model only for limited ranges of the shear rate, with varying values of the indices in different
ranges. Hence, to render the power-law approximation acceptable, the fitting was performed
in the low shear rate range (less than 5 s~!), consistent with the expected mean shear rate
of the currents in the present experiments. The uncertainty associated with the rheological
parameters is essentially due to the limitations of the power-law model in reproducing the
rheometrical experimental data. For the liquids used in the present tests, the uncertainty (one
standard deviation) associated with the flow behaviour index and the consistency coefficient
are ~ 2.5 and ~ 3.5 %, respectively. The mass density of the liquids was measured by a
hydrometer or by weighing a fixed known volume of liquid, with an uncertainty of ~ 1 %.
The temperature was measured by submerging a mercury-in-glass thermometer (0.02 °C
resolution) in the liquid before filling the syringe pump or the reservoir. Figure 5 shows
a schematic of the experimental apparatus and a snapshot of a current of shear-thinning
liquid advancing in a semicircular horizontal channel. A total of 36 tests were conducted
with different channel cross-sections (semicircular and right triangular), inclinations to the
horizontal, liquid supply methods (constant volume or volume flux), and rheologies. In most
tests a shear-thinning fluid was used. Some tests employed a Newtonian fluid to validate the
outcomes against known theoretical results. In a single test (test 55), a shear-thickening fluid
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was utilised. The experimental parameters are reported in Table 2, including: test number;
channel inclination; type of test (@ = 0 or 1 for constant volume or volume flux); injected
volume or volume flux; flow behaviour index and consistency coefficient; fluid density; global
Reynolds and Froude numbers for tests conducted with constant volume flux (@ = 1) in an
inclined channel (8 > 0); and the state of the current.

We note that the highest observed value of the Reynolds number is Re = 60; this ensures
that the Stokes flow approximation is correct, because the gradual transition from laminar
to fully turbulent flow is expected to begin for Re > 500. In only two tests (25 and 42),
the equivalent uniform flow in the channel is supercritical with a Froude number greater
than unity (or, equivalently, with a normal depth less than the critical depth) and with the
maximum height of the predicted profile smaller than the normal and critical depths. For the
tests with Fr < 1, the maximum height of the predicted profile is between the critical depth
and the normal depth. A time shift equivalent to a virtual origin was introduced to interpret
the experimental data for the inclined channel and the constant volume subcase (« = 0) for
the horizontal channel. In the latter case, the correction was needed to account for the finite
size of the reservoir and the finite time needed to open the gate.

4 Discussion

The scaled, nondimensional results for current front position as a function of time are depicted
in Fig. 6 for horizontal channels with semicircular cross-sections, and in Fig. 7 for horizontal
channels with right triangular cross-sections. Figures 8 and 9 show the corresponding results
for inclined channels. Each Figure is split into two panels (a) and (b), each covering a different
range of abscissa and ordinate values. The different factors used for the scaling of Xy in
the four Figures are expressed as f; (Xn), i = 1,2, 3, 4. Figures 8 and 9, valid for inclined
channels, depict two additional reference lines representing the normal speed of uniform
currents of shear-thinning (n = 0.42) and Newtonian liquids. The inset in panel (a) of each
Figure represents an enlargement of a portion of the panel.

For horizontal channels, the experimental results (symbols) are in good agreement with
the theoretical predictions (solid lines) for constant volume flux (¢ = 1) and constant volume
(o = 0). In the latter case, only the late time evolution of the current is consistent with the
theory, while at early times the time exponent for the front end position differs from the
similarity solution. This is because the current, after the slumping phase, is initially in an
inertial-buoyancy regime, where buoyancy forces are balanced by inertia. The transition to a
viscous-buoyancy regime takes longer for constant volume (o« = 0) than for constant volume
flux (¢ = 1) currents, as also noted by Sayag and Worster [16] for an axisymmetric geometry.
For inclined channels, good agreement with the theory at late times was again observed in
tests with « = 0. In tests with « = 1, the speed of the front was generally lower than the
theoretical prediction, and different flow regimes were observed. In some tests conducted in
triangular channels with small inclinations (up to 8.6°), the flow was stable, but the front of
the current advanced with a constant speed lower than Uy, predicted by Eq. (58) and equal
to the mean velocity U, in a channel with normal depth. The latter is significantly lower than
the former, as shown by their ratio, which is given for semicircular and triangular channels by

Uxy

U _ (2 + 5}’1) [2(7’! + l)]72(11+l)/(2+5n) (3n)73n/(2+5n) (67)

n

U

;N — (1 +3I’l)(7’l+ 1)7(”4‘1)/(14’3}1)(2’1)72}1/(14*3}1)’ (68)
n
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Table 2 Experimental parameters for all tests

Test  Shape B (deg) « g(mls™®) n wPas™)  p(kg m3) Re Fr State
21 c(2) 0.0 0.0 143.6 042  0.67 1,175

24 c(2) 0.0 0.0 3112 042  0.67 1,175

52 c(2) 7.4 0.0 126 042  0.67 1,175

53 c(2) 4.5 0.0 130 042 0.67 1,175

55 c(2) 4.5 0.0 192 1.57 0.40 1,200

1 c(1) 0.0 1.0 135 042 0.67 1,175

2 c(1) 0.0 1.0 4.08 042  0.67 1,175

3 c(1) 0.0 1.0 057 042  0.67 1,175

5 c(1) 0.0 1.0  2.17 1.00 0.16 1,241

18 c(2) 4.0 1.0 0.79 1.00 0.16 1,241 6.4 0.11 me
19 c(2) 4.0 1.0 0.78 042 0.67 1,175 1.2 0.10 me
20 c(2) 5.5 1.0 234 042 0.67 1,175 6.0 0.27 me
25 c(2) 30.6 1.0 394 042 0.67 1,175 62.5 1.98 rw
26 c(2) 30.6 1.0 077 042  0.67 1,175 9.8 0.76  rw
27 c(2) 30.6 1.0 0.21 042  0.67 1,175 2.2 0.35

28 c(2) 30.6 1.0 030 042  0.67 1,175 3.3 043 1w
29 c(2) 30.6 1.0 024 042 0.67 1,175 2.6 0.37 irw
30 c(2) 30.6 1.0 0.18 042 0.67 1,175 1.9 0.32

33 c(2) 18.0 1.0 094 042 0.67 1,175 7.2 0.50 rw
34 c(2) 18.0 1.0 054 042 0.67 1,175 39 0.36

35 c(2) 18.0 1.0 1.64 042 0.67 1,175 136 069 rw
9 t 0.0 0.0 286 042  0.67 1,175

10 t 0.0 0.0 430 042  0.67 1,175

14 t 5.5 0.0 1639 042 0.67 1,175

15 t 8.8 0.0 68.0 042 0.67 1,175

16 t 5.5 0.0 104.1 042 0.67 1,175

6 t 0.0 1.0 214 042 0.67 1,175

7 t 0.0 1.0 054 042  0.67 1,175

8 t 0.0 1.0 433 042  0.67 1,175

11 t 5.5 1.0 4.14 042 0.67 1,175 105 054 u
12 t 8.6 1.0 186 042 0.67 1,175 7.6 057 u
13 t 5.5 1.0 0.81 042 0.67 1,175 1.8 022 u
42 t 18.1 1.0 3.82 042 0.67 1,175 40 1.93

48 t 30.5 1.0 229 1.00 0.16 1,241 33 0.78 me
49 t 30.5 1.0 3.62 1.00 0.16 1,241 4.6 092 me
50 t 30.5 1.0 231 1.00 0.16 1,241 33 078 u

The symbols c(1) and c¢(2) indicate a semicircular section with » = 119 mm and r = 74.5 mm, respectively,
whereas t indicates a triangular section with 260 = 90°

Values of global Reynolds and Froude numbers are listed when « = 1 and 8 > 0

In the last column, “me” indicates a metastable state, “rw” indicates the presence of roll waves, “irw” indicates
incipient roll waves, and “u” indicates uniform flow with normal velocity
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Fig. 6 Experimental results for horizontal semicircular channels in different sets of tests. The vari-
ables X and 7 are nondimensional and are scaled according to Eq. (21), with f1(Xy) = [(Xn/nN)
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Fig. 7 Experimental results for horizontal right triangular channels in different sets of tests. The vari-
ables X and 7 are nondimensional and are scaled according to Eq. (48), with fo(Xy) = [(Xn/nN)
2m/K M DI Fie The solid line represents the theoretical prediction

respectively. For both cross-sections, the numerical value of the ratio is always larger than
unity, reaching a maximum of 2 forn = 1 andn = 2. For tests with larger channel inclinations
(18.0°-30.6°), streamwise instabilities developed with bores followed by gentle profiles.
This phenomenon, known as roll waves, has been studied in the laminar regime by Julien
and Hartley [25] for Newtonian fluids, Ng and Mei [10] for power-law shear-thinning fluids,
and Longo [26] for power-law shear-thickening fluids. Roll waves start to form on uniform
currents with a minimum length corresponding to the level of dissipation of the (uniform)
flow and continue to grow with increasing lengths and bore speeds. Developed periodic roll
waves in the flow of power-law shear-thinning liquids in rectangular channels show a peak
fluid velocity exceeding the uniform current speed by ~ 30 % [10]. Although the dynamics of
roll waves is strongly affected by the shape of the channel, we expect the peak fluid velocity
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Fig. 8 Experimental results for inclined semicircular channels in different sets of tests. The variables X y
and T are nondimensional and are scaled according to Eq. (32), with f3(Xy) = [(X 15\}""2 / gg")[16(n +
1)/(33/2(5n+2))]2+ D1/ [20(+D)+3n] The solid line represents the theoretical prediction; the blue dashed
and green dash-dotted lines represent the normal speeds for a uniform current of shear-thinning (n = 0.42)
and Newtonian liquids, respectively. The inset in a shows an enlargement of a portion of the figure, illustrating
the behaviour of currents with roll waves (tests 25 and 28)
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Fig. 9 Experimental results for inclined right triangular channels in different sets of tests. The variables X y
and T are nondimensional and are scaled according to Eq. (58), with fa(Xpy) = [(X?\/"+l/gt2")[(n + 1)/

Bn + 1))+ D/ lem+D+2n] The solid line represents the theoretical prediction; the blue dashed and green
dash-dotted lines represent the normal speeds for a uniform current of shear-thinning (n = 0.42) and Newtonian
liquids, respectively. The inset in a shows an enlargement of a portion of the figure, illustrating the behaviour
of currents in a metastable state (tests 48 and 49)

also to be larger than the uniform current speed in semicircular and triangular channels; this
velocity field pushes the current front end, which in turn moves faster than the uniform speed.
In some of the present tests, the front of the current advanced with an average speed greater
than the normal speed, but still lower than that predicted by the present model; this finding is
qualitatively consistent with the mechanism of current advancement described above. While
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Fig. 10 a Position of the current front for test 28 (semicircular inclined channel, n = 042 +2.5%, u =
0.6743.5% Pas™, p=1175+£1.0% kgm 3,4 = 0.30£1% ml s~1, B = 30.6°+0.5%, « = 1.040.1 %,
and r = 74.5 = 1 % mm, uncertainty expressed as one standard deviation). The thick red and thin light blue
solid lines are the theoretical prediction and the experimental results, respectively; the dashed red lines are
the 95 % confidence limits and the thick blue dashed line represents the uniform motion (normal speed). The
arrow indicates the transition to a different flow regime. The error bar equal to £2 times the experimental
uncertainty in detecting the front end position of the current is indicated for comparison. b Sensitivity analysis
for the length of the gravity current in an inclined channel with a semicircular cross-section. The ratio of
the standard deviation, o;, of the ith parameter and the total standard deviation, oy N> is shown assuming an
uncertainty of 1 % for each parameter. The uncertainty in time is assumed to be equal to 1/50 s, i.e., half the
time interval between two subsequent frames

the model adopted herein does not consider inertia, the appearance of incipient roll waves
and/or metastable configurations suggests that inertial effects or other secondary effects were
notentirely negligible. Upon examining the position of the current front against time in greater
detail in specific tests exhibiting roll waves (e.g., test 28 conducted in a semicircular inclined
channel, Fig. 10a), it is seen that the current propagation is initially correctly predicted by
the present model. Then, the speed of the front end decreases quite abruptly as soon as the
roll waves increase in length. This was also documented for other tests showing longer roll
waves, and confidence intervals of the same order as those shown in Fig. 10a were obtained.
On the basis of these findings, it can be concluded that the present model correctly interprets
the advancement of the current before the transition between incipient roll waves and roll
waves. As soon as the roll waves increase in length, part of the energy is dissipated in the
breaking process of the bores, and the front of the current reduces its speed. To capture this
transition in triangular channels, numerous tests were added to the initially planned sequence.
The channel material was also changed from aluminium to PVC to detect the possible effects
of the contact angle and/or any electrical effects evident in microchannel viscous flows (see,
e.g., Yang and Li [27]); however no significant change was observed in the propagation rate.
Notably, tests conducted in identical conditions yielded different values for the speed of the
front end of the current; this indicated the metastability of the flow, which is highly sensitive
to minimal disturbances.

An uncertainty analysis was conducted by expressing the length of the current, xy, as a
function of the problem parameters and time, and by expanding x in a Taylor series to first
order. After calculating the contribution of each parameter, the total uncertainty in xy was
obtained by summing the individual contributions in quadrature as

axN 2 3)(1\/ 2
UxNz/(an) ag+(ﬁ) oF (69)
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where the symbols o; denote the standard deviation, which is assumed to be an estimate
of the uncertainty. Figure 10b depicts the sensitivity of the model to the uncertainty in the
parameters as the ratio between the standard deviation associated with each parameter and the
total standard deviation, assuming a fixed uncertainty of 1 % for each parameter. The highest
ratio is associated with the rheological parameters n and jt, accounting for more than 80 %
of the total standard deviation of x . This is because in the present tests, the uncertainties in
n and pt are by far the most relevant - all the other sources of uncertainty are almost trivial.

5 Conclusions

We investigated the flow of laminar gravity currents of power-law liquids in horizontal and
inclined channels having different cross-sectional shapes, namely semicircular and right tri-
angular, theoretically and experimentally. The theoretical solutions are self-similar or based
on the method of characteristics, and allow the evaluation of the position of the current
front and the thickness of its profile, extending the Newtonian results of Takagy and Hup-
pert [20,21]. Laboratory experiments were conducted with liquids of different rheologies in
semicircular and triangular channels. The main conclusions of our work are:

— The position of the current front depends on (i) the volume parameter «, (ii) the liquid
rheology, and (iii) the channel inclination and shape of the cross-section. The latter
factor influences the mass balance equation and modulates the downstream evolution of
the current. Critical values of « are determined for horizontal channels as a function of
behaviour index n as a. = n/(n + 1), and for inclined channels as «, = 1, irrespective
of cross-section geometry. For triangular cross-sections, a maximum (minimum) value
of the rate of spreading is attained for ¢ < o (@ > ).

— The position of the current front obtained experimentally is generally in good agreement
with theory. For tests in inclined channels with « = 1, a variety of flow regimes typical
of open-channel flows were observed at the end of the tests: uniform flow with normal
depth, incipient roll waves, roll waves, metastable conditions. The final propagation rate
of the current front was overpredicted by the model, while the presence of roll waves
suggested the influence of inertia or other secondary effects. Upon examining the rate
of propagation of the current over time, it was discovered that the theoretical solution
accurately describes the phenomenon before the transition between incipient roll waves
and roll waves. As these require a sufficient channel length to develop, the final fate
of the currents analysed in the present tests is not known. However, on the basis of
our experimental results, we infer that the profile predicted for inclined channels in the
present model is a limiting profile of the current and marks the transition to a different
flow regime.

— The rheology of complex liquids is usually of concern in laminar flow models because
it is often not adequately known or described. This is confirmed by the present study,
where the rheological parameters are shown to be the main source of uncertainty. This
behaviour supports the use of carefully designed laboratory experiments as rheometric
tests.

— The results obtained may prove useful in analysing the joint influence of rheology, chan-
nel shape, and volume growth rate in environmental flows, such as turbidity currents,
avalanches, and pyroclastic flows of non-Newtonian fluids characterised by negligible
yield stress.
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