Supplementary material for Combined effect of rheology and confining boundaries on spreading of porous gravity currents

Sandro Longo^a, Valentina Ciriello^b, Vittorio Di Federico^b, Luca Chiapponi^a

^aDipartimento di Ingegneria Civile, Ambiente Territorio e Architettura (DICATeA), Università di Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy
^bDipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Università di Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy

1. The analysis of the exponents

In the following figures, the behaviour of the exponents F_2 , F_3 , and $F_3 - F_2$ is depicted as a function of β for n = 0.5, 1, 1.5 and as a function of n for $\beta = 0.5, 1, 2$; results for different values of α are shown.

Preprint submitted to Advances in Water Resources

February 24, 2015

Figure S.1: (a)-(f) The value of the time exponents F_2 for a current with length $\propto T^{F_2}$ and volume $\propto T^{\alpha}$ in a porous channel with cross sectional shape parameterized by β . Results are shown for F_2 as a function of β for n = 0.5, 1, and 1.5 and as a function of n for $\beta = 0.5, 1, and 2$, and for different values of α .

Figure S.2: (a)-(f) The value of the time exponents F_3 for a current with height $\propto T^{F_3}$ and volume $\propto T^{\alpha}$ in a porous channel with cross sectional shape parameterized by β . Results are shown for F_3 as a function of β for n = 0.5, 1, and 1.5 and as a function of n for $\beta = 0.5, 1, and 2$, and for different values of α .

Figure S.3: (a)-(f) The value of the time exponents $F_3 - F_2$ for a current with aspect ratio/mean free-surface gradient $\propto T^{F_3-F_2}$, and volume $\propto T^{\alpha}$ in a porous channel with cross sectional shape parameterized by β . Results are shown for $F_3 - F_2$ as a function of β for n = 0.5, 1, and 1.5 and as a function of n for $\beta = 0.5, 1, and 2$, and for different values of α .