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One-dimensional flows of gravity currents within horizontal and inclined porous channels are investi-
gated combining theoretical and experimental analysis to evaluate the joint effects of channel shape
and fluid rheology. The parameter b governs the shape of the channel cross section, while the fluid rheol-
ogy is characterised by a power-law model with behaviour index n. Self-similar scalings for current
length and height are obtained for horizontal and inclined channels when the current volume increases
with time as ta.

For horizontal channels, the interplay of model parameters a;n, and b governs the front speed, height,
and aspect ratio of the current (ratio between the average height and the length). The dependency is
modulated by two critical values of a;ab ¼ n=ðnþ 1Þ and an ¼ ð2bþ 1Þ=b. For all channel shapes, ab

discriminates between currents whose height decreases (a < ab) or increases (a > ab) with time at a
particular point. For all power-law fluids, an discriminates between decelerated currents, with time-
decreasing aspect ratio (a < an), and accelerated currents, with time-increasing aspect ratio (a > an).
Only currents with time-decreasing height (a < ab) and aspect ratio (a < an) respect model assumptions
asymptotically; the former constraint is more restrictive than the latter.

For inclined channels, a numerical solution in self-similar form is obtained under the hypothesis that
the product of the channel inclination h and the slope of the free-surface is much smaller than unity; this
produces a negligible error for h > 2�, and is acceptable for h > 0:5�. The action of gravity in inclined
channels is modulated by both the behaviour index n and the shape factor b. For constant flux, the current
reaches at long times a steady state condition with a uniform thickness profile. In steep channels and for
sufficiently long currents, the free-surface slope becomes entirely negligible with respect to channel incli-
nation, and the constant thickness profile depends only on n.

Theoretical results are validated by comparison with experiments (i) in horizontal and inclined chan-
nels with triangular or semicircular cross-section, (ii) with different shear-thinning fluids, and (iii) for
constant volume and constant flux conditions. The experimental results show good agreement with theo-
retical predictions in the long-time regime.

Our analysis demonstrates that self-similar solutions are able to capture the essential long-term beha-
viour of gravity currents in porous media, accounting for diverse effects such as non-Newtonian rheology,
presence of boundaries, and channel inclination. This provides a relatively simple framework for sensitiv-
ity analysis, and a convenient benchmark for numerical studies.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Gravity currents are responsible for many natural processes
occurring in the atmosphere, water bodies and the subsurface, as
whenever two fluids of different density come in contact, the grav-
ity action favours their relative motion. The interest in gravity
currents has generated a vast literature, including theoretical,
numerical and experimental studies (e.g. [1,2] and references
therein). Gravity currents in porous media involve the spreading
of a fluid in a natural or artificial domain saturated with another
fluid of a different density; the pressure/buoyancy driving is bal-
anced by viscous adjustment of the fluid in the pore space. This
phenomenon has been studied in connection with environmental
and industrial applications such as aquifer remediation [3,4], car-
bon sequestration [5], saltwater intrusion [6], and well drilling [7].
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Earlier studies [8–10] have addressed the one-directional prop-
agation of gravity currents driven by gradients in hydrostatic pres-
sure (horizontal bed) or gravity (inclined bed) in homogeneous
domains with simple geometry. Further complexity in the flow
description arises when either heterogeneity in medium properties
or topographic control is present in the flow domain, as suggested
by diverse applicative contexts, such as modelling of carbon diox-
ide injection in natural reservoirs [11].

Within medium heterogeneity, Ciriello et al. [12] considered the
influence of vertical and horizontal permeability variations on the
propagation of planar currents. Zheng et al. [13,14] further
extended the study of gravity driven flows in elongated porous
domains, by considering: (i) coupled permeability and porosity
gradients parallel and transverse to the flow direction; (ii) currents
propagating away or towards the domain origin, giving rise to dif-
ferent types of self-similar behaviour. These studies showed that
macro-heterogeneity in medium properties alters both the exten-
sion and the shape of the intruding current.

As for topographic control, Golding and Huppert [15]
investigated the effect of confining boundaries on one-dimensional
gravity-driven flow in porous channels, by considering a uniform
cross-section with shape described by one parameter. The prop-
agation rate is affected by channel shape in a way depending on
the time exponent of the current volume; when the channel has
a slope much steeper than its free surface, the spreading rate is
unaffected by confining boundaries. Pegler et al. [16] analysed
the effect of an upward sloping topography in the flow direction
on constant flux currents. Topography was shown to control the
early or late-time evolution of the current, depending on the shape
of the lower boundary over which the current flows.

The rheology of the intruding fluid is another key factor in con-
trolling the propagation of gravity currents in porous media
[17,18]. In some cases the ambient and current fluids may be
appropriately described as Newtonian, but in many instances,
one or both fluids behave as non-Newtonian; relevant cases
include polymer solutions, heavy oils, surfactants, foams, gels,
emulsions, greases, and water-based slurries used for aquifer
remediation [19]. The rheology of non-Newtonian fluids of interest
in porous media flow encompasses several possible models [20];
among these, the power-law model provides the simplest relation-
ship between stress and strain, and constitutes an acceptable
approximation when: (i) the fluid is purely viscous; (ii) yield stres-
ses are negligible, (iii) no other physical effects, such as adsorption,
are present; (iv) the fluid rheologic parameters are evaluated in the
range of shear rates occurring in the medium at the pore scale
[21,22].

The impact of heterogeneity in porous medium properties is
particularly relevant for non-Newtonian flow, as suggested by
the numerical simulations of Fadili et al. [23], who showed that
in correlated media streamlines of shear-thinning flow tend to con-
centrate along higher permeability paths. To explore the combined
effect of fluid rheology and spatial heterogeneity, Di Federico et al.
[24] derived a closed-form solution for radial gravity currents of
power-law fluids in porous media with a deterministic permeabil-
ity variation along the vertical; the solution was then validated
experimentally. The axisymmetric scheme describes the motion
of a gravity current originating from a single vertical borehole
and spreading in an infinite domain. For currents propagating in
narrow, elongated domains, topographic features may control the
flow, yet to the best of our knowledge the effect of topographic
control on non-Newtonian gravity currents has never been
explored.

To this end, we firstly investigate in this work the combined
effect of power-law rheology and confining boundaries on the
motion of gravity currents in porous media. The boundary effect
is represented by means of a channel of constant cross-section
along the lines of Golding and Huppert [15], with the intruding
fluid flowing (i) at the impervious bottom, for currents denser than
the ambient fluid, or (ii) at the impervious cap, for currents lighter
than the ambient fluid. In both cases, the confined porous channel
can be horizontal or inclined. A limiting case of channels engraved
in impervious boundaries is represented by fractures and very nar-
row cross-section channels. This scenario was analysed for low-
Reynolds number flows by Takagi and Huppert [25,26] for
Newtonian fluids, and by Longo et al. [27] for shear-thinning fluids.
The presence of porous material inside these fractures strongly
influences flow behaviour [26].

In the following sections we first present the theoretical model
partially introduced by Ciriello et al. [28] for the limited case of
horizontal channels and here extended to the inclined case. Both
cases are discussed in detail, focusing on sensitivity to model
parameters and range of applicability of the proposed formulation.
Then an extended set of laboratory experiments is presented and
discussed in order to validate the theoretical formulation under
diverse possible scenarios, including: (i) different fluids; (ii) chan-
nels of different shape; (iii) horizontal or inclined channels; (iv)
constant volume or constant flux injection. A set of conclusions
closes the paper.

2. Problem formulation

Consider a non-Newtonian fluid with rheology described by the
classical power-law model relating shear stress s and shear rate
_c; s ¼ el _c _cj jn�1, having parameters el (consistency index) and n
(fluid behaviour index). This fluid, of density qþ Dq, is released
at the origin of a straight channel of uniform inclination h as
depicted in Fig. 1. The channel is filled with a homogeneous porous
medium saturated with a lighter fluid of density q. Under this sce-
nario, a gravity current is generated, advancing in a condition of
vertical equilibrium with hydrostatic pressure distribution. The
height of the current is much smaller than its length, with conse-
quent negligible vertical velocities. Surface tension effects and
mixing at fluids interface are also unimportant. The channel
cross-section is symmetric and described by a power-law relation-
ship: bðyÞ ¼ raðy=aÞb, where b is a shape parameter, a a length
associated with the channel width, and r a dimensionless constant.
For wide cross sections with b > 1, the current is taken to occupy
only a small portion of the channel, so that h� a. Note that: (i)
the case b ¼ 1 corresponds to a triangular cross-section with
r ¼ cot v, being 2v the vertex angle; (ii) the case b ¼ 2 approxi-
mates a semicircular cross-section as the height of the current is
limited compared to the cross section radius a=2; (iii) the case
b!1 corresponds to a rectangular channel of half width a; as
h� a, two-dimensional flow on a flat surface is recovered.

Our model relies on (i) local mass balance, (ii) a 1-D seepage for-
mula extending Darcy’s law to the case of non-Newtonian fluid
flow (e.g. [17]). These two equations read, respectively

/
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Fig. 1. A sketch of the system with the coordinates and the cross-section in the y� z plane.
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where F1 ¼ bþ1
b is a cross-section shape factor, reducing to unity for

plane geometry. The local mass balance expressed by Eq. (3) is com-
plemented by the global continuity equation, written in the form

/
Z xNðtÞ

0
AchF1 dx ¼ qta; ð4Þ

in which a and q (dimensions ½L3T�a�) are positive constants and
xNðtÞ is the front end of the current. Note that a ¼ 0 and a ¼ 1 indi-
cate the instantaneous release of a fixed volume and a constant vol-
ume flux, respectively. The problem formulation is completed by
the constraint of vanishing height at the current front, i.e.

h xNðtÞ; tð Þ ¼ 0: ð5Þ
3. Horizontal channels

3.1. Solution

Horizontal channels represent a particular application of the
proposed model. This configuration has been introduced and pre-
liminarily discussed by Ciriello et al. [28]. Here, we recover the
main concepts of this case to explore the results in greater depth
and compare them with those associated with inclined channels.
In the horizontal configuration, Eq. (3) reduces to
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Upon introducing the time and space scales t� ¼ q
/v�3
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;

x� ¼ v�t�, (6) and (4) become
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where ~Ac ¼ 2b
bþ1

1
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a
x�
� �ðb�1Þ=b, while the boundary condition (5) is

unchanged in dimensionless form.
Hereinafter the tilde, indicating a non dimensional variable, is

removed. Note that for a ¼ 3, the time scale t� defined above is
invalid, and a new, arbitrary one t�� has to be defined; a second
velocity scale v��, proportional to q1=3, emerges beyond v� defined
above. The dimensionless formulation of the equations for a ¼ 3
thus includes a new parameter d, equal to the ratio between the
two velocity scales v� and v��. Mathematical details can be found
in [10,22,24].

Eqs. (7) and (8) provide the scaling of the current length and
height and suggest the following solution form and self-similar
variable

hðx; tÞ ¼ A�ðnþ1ÞF4
c gF5

N tF3WðfÞ; g ¼ AF4
c x=tF2 ; f ¼ g

gN
; ð9Þ
where gN is the value of the similarity variable at the current front,
WðfÞ is the shape function, and f is the reduced similarity variable.
The position of the current front is given by

xNðtÞ ¼
gN

AF4
c

tF2 : ð10Þ

The exponents are F2 ¼ abþðbþ1Þn
ðbþ1Þðnþ1Þþb ; F3 ¼ b½aðnþ1Þ�n�

ðbþ1Þðnþ1Þþb ; F4 ¼ b
ðbþ1Þðnþ1Þþb ;

F5 ¼ nþ 1. For n ¼ 1 (Newtonian fluid) and any b, the formulation
reduces to F2 ¼ abþbþ1

3bþ2 ; F3 ¼ bð2a�1Þ
3bþ2 ; F4 ¼ b

3bþ2 ; F5 ¼ 2; these results
coincide with those of Golding and Huppert [15]. For b!1 and
any n, the two-dimensional problem of Di Federico et al. [17]
is recovered; in this case the exponents simplify to
F1 ¼ 1; F2 ¼ aþn

nþ2 ; F3 ¼ aðnþ1Þ�n
nþ2 ; F4 ¼ 1

nþ2, while F5 ¼ nþ 1. For b!1
and n ¼ 1 (plane porous flow of a Newtonian fluid), the
problem reduces to one of the special cases examined by Huppert
and Woods [8] and F1 ¼ 1; F2 ¼ aþ1

3 ; F3 ¼ 2a�1
3 ; F4 ¼ 1

3 ; F5 ¼ 2.
Substituting Eq. (9) in Eqs. (7) and (8) and in the dimensionless
form of Eq. (5) yields
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For a ¼ 0 the set of Eqs. (11)–(13) has a closed form solution given
by
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where F20 ¼ F2ða ¼ 0Þ � ðbþ1Þn
ðbþ1Þðnþ1Þþb and Cð:Þ is the Gamma function.

For n ¼ 1 the time exponent of the length of a current of constant
volume reduces to F20 ¼ 2=5 for triangular channels (b ¼ 1), and
to F20 ¼ 3=8 for nearly semicircular channels (b ¼ 2). For a – 0
the set of Eqs. (11)–(13) needs to be solved numerically.

The left panel of Fig. 2 depicts the shape factor against the
reduced similarity variable for different values of a and n. The
shape factor increases for increasing a, and is larger for shear thin-
ning than for shear thickening fluids; this difference decreases
with increasing a. Upon plotting the prefactor gN versus b (right
panel of Fig. 2), it is seen that this dimensionless quantity
decreases with a, and is weakly dependent on the cross sectional
shape for b P 1; the dependence is stronger for narrow cross sec-
tions (b < 1). The influence of n on gN is also relatively minor.

To understand how these results impact dimensional quantities
of interest, Fig. 3 shows the thickness of the current at different
times in a channel of circular cross section; flow of three fluids
with different flow behaviour index n and the same value of consis-
tency index el is considered. Results are shown for a ¼ 0 (constant
volume) and a ¼ 1:0 (constant volume flux). It is seen that



Fig. 2. Left panel: shape function for a circular horizontal channel (b ¼ 2) for a ¼ 0 (thin curves), a ¼ 1 (curves), and a ¼ 2 (thick curves) and for n ¼ 0:5;1;1:5. Right panel:
the prefactor gN as a function of the cross-section shape for various values of a and n.

Table 1
Value and behaviour of time exponents for horizontal channels. Row 1: Current speed
F2 � 1. Row 2: Current thickness F3. Row 3: Current aspect ratio F3 � F2. Rows 4 and
5: critical values ab and an . Column 1: value of the exponent. Column 2: condition for
exponent > 0. Column 3: condition for exponent increasing with a. Column 4:
condition for exponent increasing with n. Column 5: condition for exponent
increasing with b.

Exponent Value > 0 @

@a
> 0

@

@n
> 0

@

@b
> 0

F2 � 1 ab� 2b� 1
ðbþ 1Þðnþ 1Þ þ b

a > an 8a;n; b a < an a > ab

F3 b½aðnþ 1Þ � n�
ðbþ 1Þðnþ 1Þ þ b

a > ab 8a;n; b a > an a > ab

F3 � F2 nðab� 2b� 1Þ
ðbþ 1Þðnþ 1Þ þ b

a > an 8a;n; b a > an a > ab

ab n
nþ 1

an 2bþ 1
b
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increasing n generates a shorter current, especially at early times.
Asymptotically, the difference in length becomes negligible for
a ¼ 0, while it is more evident for a ¼ 1:0. Increasing the consis-
tency index, or reducing the medium permeability and the fluid
density, reduces the extension of the current (not shown here).

3.2. Discussion

The exponents F2 and F3 govern the time change of the current
radius and height, respectively. While F2 is always positive, Eq. (10)
implies that the current front is accelerated, decelerated or moves
at constant speed depending whether F2 > 1; F2 < 1 or F2 ¼ 1,
respectively. Similarly, Eq. (9) entails a time increase of the current
thickness at a given location for F3 > 0, and a decrease for F3 < 0.
Taking the spatial average of the current thickness over its length

xN , and dividing by xN , shows that the current aspect ratio h=xN

(where the overbar indicates the spatial average) is proportional
to time raised to the power F3 � F2. Hence the current aspect ratio
increases or decreases over time, depending on the sign of F3 � F2.
The same dependence on time is found for the average free-surface

gradient ð@hÞ=ð@xÞ driving the motion.
The sign of the time exponents F2 � 1; F3, and F3 � F2 is studied

by deriving the critical value of a, above which each exponent is
positive. Table 1 reports the values of F2 � 1; F3 and F3 � F2 in the
first column, and lists the respective conditions on a in the second
column. Only two critical values of a emerge, ab ¼ n=ðnþ 1Þ and
an ¼ ð2bþ 1Þ=b, as the conditions for the positivity of F2 � 1 and
F3 � F2 are equal. This is so because an accelerated current is dri-
ven by a pressure gradient increasing over time.

The dependence of the time exponents F2 � 1; F3, and F3 � F2 on
model parameters is then studied systematically by taking their
partial derivatives with respect to a;n, and b. Note that the type
of dependence resulting for F2 � 1 is valid also for F2. Columns
three to five of Table 1 list the conditions under which each expo-
nent increases with a;n, and b, respectively. It is seen that all expo-
nents are increasing functions of a; as the current volume
Fig. 3. Current thickness at times t ¼ 10 s (thin curves), t ¼ 100 s (curves), and t ¼ 1000 s
medium with d ¼ 2 mm;/ ¼ 0:38; fluid properties are qc ¼ 1080 kg m�3; el ¼ 0:14 Pa s
volume flux q ¼ 10 ml s�1.
increases more rapidly with time, so do the current length and
speed, thickness at a given location, and aspect ratio.
Furthermore, the partial derivatives of all the exponents with
respect to b and n are null for a ¼ ab and a ¼ an, respectively.
This implies that the two critical values of a previously deter-
mined, ab and an, govern also the dependence of the exponents
on the channel shape and fluid rheology, parameterised, respec-
tively, by b and n.

When a ¼ ab, the time exponents become independent of b, as
F2 ¼ n=ðnþ 1Þ; F3 ¼ 0, and F3 � F2 ¼ �n=ðnþ 1Þ; thus ab discrimi-
nates between subcritical (a < ab) and supercritical (a > ab) cur-
rents, whose thickness respectively decreases or increases with
time at a particular point. This is a consequence of mass con-
servation, as only for a supercritical current the volume increase
is rapid enough to compensate for the length increase with time.
Further, it is noted that all exponents decrease with increasing b
for a < ab; the reverse is true for a > ab. To explain the behaviour
(thick curves) in a circular horizontal channel (b ¼ 2) of radius 0:095 m, filled with a
�n , and n ¼ 0:5;1:0;1:5. Left panel: a ¼ 0, volume q ¼ 100 ml. Right panel: a ¼ 1,
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of F3, we note that for any a, the current distributes the total vol-
ume at given time between an increase in length and a variation in
thickness. For subcritical currents, the increase in length is more
important, as the thickness decreases over time; for supercritical
currents, the variation in thickness is more important, as the thick-
ness increases over time. Hence, it is more efficient for a supercriti-
cal current to distribute the incoming volume over positive
thickness variations than over length increases. As the channel vol-
ume per unit length is larger for flatter cross sections (larger b), the
exponent F3 increases with increasing b. Conversely, F3 decreases
with increasing b for subcritical currents. The tendency of thick-
ness variations to prevail over length increases for supercritical
currents (a > ab) is confirmed by the behaviour of the exponent
F2. As already noted, F2 behaves similarly to F3, but it results
@F3=@b > @F2=@b if a > ab (as suggested by the positiveness of
@ðF3 � F2Þ=@b if a > ab in Table 1). This indicates that the average
spatial gradient of the current thickness increases over time for
a > ab, even though at a reduced rate for increasing b.

A comparison with analogous results obtained for free-surface
viscous flow in open channels without porous media by Longo
et al. [27] reveals that while ab has the same value n=ðnþ 1Þ, the
dependency of F2 on b is not monotonic as implied by Table 1 for
porous currents, but that F2 attains its minimum or maximum
value in triangular channels with b ¼ 1, depending whether
a < ab or a > ab. This partial analogy in physical behaviour was
explained for Newtonian currents by Golding and Huppert [15],
who noted that the common value of ab stems from mass balance
considerations, that hold true for porous and free-surface gravity
currents alike. The qualitative difference in behaviour for narrow
cross sections is explained by the adoption of the Darcy and
Stokes equation for the porous and non-porous case, respectively.

When a ¼ an, the time exponents become independent of n, as
F2 ¼ 1; F3 ¼ 1; F3 � F2 ¼ 0. Hence an discriminates between cur-
rents whose aspect ratio decreases (a < an) or increases (a > an)
with time. Correspondingly, the current decelerates or accelerates,
driven by an average spatial pressure gradient decreasing or
increasing with time. When a < an, a larger n implies an increase
of F2 and a decrease of F3 and F3 � F2; the reverse is true for
a > an. Physically, a decelerating current (a < an) implies that the
shear applied to the fluid decreases over time. For a shear thinning
fluid (n < 1), this entails an increased resistance to flow, as the
apparent viscosity increases with decreasing shear stress. The
opposite effect happens with a shear thickening fluid (n > 1): the
apparent viscosity decreases with decreasing shear stress, hence
the resistance to flow decreases over time. As a result, decelerating
currents of shear-thickening fluids have a larger F2 and a smaller F3

than decelerating currents of shear-thinning fluids. The behaviour
is the opposite for a accelerating currents (a > an), for which the
shear applied to the fluid increases over time.

The two critical values of a shown in Table 1 are themselves
function of problem parameters n and b. Upon analysing their
dependence on flow behaviour index and cross sectional shape,
we note that:

� ab is controlled by rheology, and is an increasing function of n.
It tends to 0 for n! 0; it takes a value u0:25 for a very shear
thinning fluid with n ¼ 0:3, increasing to 0:5 for a Newtonian
fluid, and reaching a value of 0.6 for a very shear thickening
fluid with n ¼ 1:5. For the theoretical case n!1;ab ! 1.
Physically, ab is the threshold value of a beyond which the cur-
rent height increases with time at a given point. As the fluid
behaviour index n increases, so does the resistance to flow.
Hence for larger values of n, more fluid is required to maintain
an increase in the thickness of the current; thus the threshold
value ab is larger.
� an is controlled by channel shape, and decreases as the cross
section becomes flatter (b increases), varying from values larger
than 3 for narrow cross sections with b < 1 to 3 for a triangular
cross section with b ¼ 1, and reaching the limit value of 2 for
wide rectangular channels (b!1). Physically, an is the thresh-
old value of a to be exceeded to maintain accelerated currents
with time increasing aspect ratio. As b increases, so does the
volume required to fill a given cross section. Hence by virtue
of mass balance the current length will be shorter, and the
threshold value of a needed to observe an accelerated current
will decrease.

Summarizing the previous discussion, it can be seen that dis-
tinct ranges of a are associated with different behaviours, depend-
ing whether the current has time decreasing or time increasing
thickness (a7ab), and is decelerated or accelerated (a7an).
Irrespective of fluid nature and channel shape, the two threshold
values of a are such that ab < an. Hence, the following flow regimes
are observed: (i) in the range a 6 ab, the current is decelerated
(F2 � 1 < 0), and its thickness does not increase with time
(F3 6 0); (ii) for ab < a 6 2, the current is decelerated (F2 � 1 is still
negative) and its thickness increases with time (F3 > 0), as it does
for larger a values; (iii) for 2 < a 6 3, the current is decelerated in
narrow cross sections with b < 1 (since F2 � 1 < 0), while it may be
decelerated or accelerated depending on channel shape b in wide
cross sections with b P 1; (iv) for a > 3, the current is accelerated
in wide cross sections with b P 1 (since F2 � 1 > 0), while it may
be decelerated or accelerated in narrow cross sections with b < 1.

To better grasp the behaviour of F2; F3, and F3 � F2, these expo-
nents are shown in Fig. 4(a), (c) and (e) as a function of b for fixed
n ¼ 0:5 and in Fig. 4(b), (d) and (f) as a function of n for fixed
b ¼ 2; results for various values of a are shown. The two reference
values (n ¼ 0:5 and b ¼ 2) represent common cases in natural set-
tings, i.e. a shear-thinning fluid and a nearly semicircular cross sec-
tion. A more complete overview of results is shown in the
Supplementary Material, where the behaviour of the exponents
F2; F3, and F3 � F2 is depicted as a function of b for n ¼ 0:5;1;1:5,
and as a function of n for b ¼ 0:5;1;2. It is observed that variations
of the channel shape bring about significant changes in the key time
exponents in the range 0 < b 6 2; this effect is compounded for lar-
ger values of n. Results are less sensitive to b for b > 3, as the change
in cross sectional area corresponding to variations of b is relatively
minor in this range. The influence of n on the exponents is larger
for shear-thinning than for shear-thickening fluids, as the change
in apparent viscosity is proportionately larger for lower values of n.

The previous analysis allows evaluating the constraints placed
on the value of problem parameters by model assumptions. Two
limitations emerge when considering the large time asymptotic
behaviour of the current:

� The average space gradient must be limited in order to satisfy
the thin current approximation, as large gradients induce non
negligible vertical components of the velocity, making the ver-
tical equilibrium hypothesis and the Dupuit approximation
unacceptable. This implies a time decreasing aspect ratio, i.e.
F3 � F2 < 0, or equivalently a < an. However, the limitation is
somewhat relaxed by two effects: (i) vertical velocity compo-
nents in turn favour a reduction of the height and a smoothing
of the space gradient; (ii) the invalidity of the Dupuit approx-
imation is a local phenomenon concentrated near the injection
zone, with limited effects on the overall current development
(see [29]).
� The current thickness at a given point has to decrease with

time; otherwise the current profile will eventually exceed the
height of the channel cross section, and the current will not



Fig. 4. (a)–(f) Time exponents F2; F3 and F3 � F2 for a current with length / TF2 , height / TF3 , aspect ratio/mean free-surface gradient / TF3�F2, and volume / Ta in a porous
channel with cross sectional shape parameterized by b. Results are shown for F2; F3 and F3 � F2 in the upper, intermediate and lower rows, respectively, as a function of b for
flow behaviour index n ¼ 0:5 and as a function of n for b ¼ 2 (left and right columns, respectively), and for different values of a.
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be completely confined by the boundaries. Hence, the finiteness
of the channel cross section implies F3 6 0, or equivalently
a 6 ab.

The second limitation is more stringent, as ab < an. This was
already highlighted for laminar free-surface gravity currents in
channels of power-law cross sections [27]. The validity of model
assumptions can be also checked preasymptotically following the
methodology outlined in Ciriello et al. [12] for a finite time value.

4. Inclined channels

4.1. Solution

For inclined channels, the general formulation of the problem
given by Eqs. (3)–(5) is valid, as both the slope of the channel
and that of the current drive the flow. Assuming that cot h @h

@x � 1,
but is not negligible with respect to unity, the following approx-
imation holds,

1� cot h
@h
@x

� �1=n

	 1� 1
n

cot h
@h
@x
; ð15Þ

and the mass balance Eq. (3) reduces to

@hF1

@t
þ v�ðsin hÞ1=n @

@x
hF1 � hF1

n
cot h

@h
@x

" #
¼ 0: ð16Þ

The effective error induced by this approximation will be checked a
posteriori. Changing coordinates to the moving frame

x0 ¼ x� v�tðsin hÞ1=n, Eqs. (3) and (4) become, respectively:

@hF1

@t
� v�

n
ðsin hÞ1=n cot h

@

@x0
hF1 @h

@x0

� �
¼ 0; ð17Þ

/
Z xNðtÞ�v�tðsin hÞ1=n

�v�tðsin hÞ1=n
AchF1 dx0 ¼ qta; ð18Þ
and admit a self-similar solution based on the similarity variable
and the solution form given by

g ¼ x0

v�
n

h0t cot h ðsinhÞ1=n
� �1=2 ; h ¼ h0f ðgÞ; ð19Þ

where h0 is a constant coefficient.
For a Newtonian fluid (n ¼ 1), Golding and Huppert [15]

observed that the conservation equation written in the moving
frame for an inclined channel (17) is identical to the conservation
equation valid for a horizontal channel (6), with v� changed to
v� cos h; hence the action of gravity is not affected by cross-sec-
tional shape. This conclusion cannot be extended to non-
Newtonian power-law fluid flow, since Eqs. (6) and (17) differ for
n – 1. Hence for non-Newtonian flow the action of gravity in
inclined channels is modulated by both the cross-shape factor F1

and the fluid behaviour index n.
When the channel inclination is large enough (e.g.,

@h=@x < 0:1 tan h far from the front end of the current), the current
is driven by gravity and the slope of the free surface can be totally
neglected. In this case Eq. (15) is equal to unity irrespective of the n
value, and Eq. (3) simplifies to

@hF1

@t
þ v�ðsin hÞ1=n @

@x
hF1
� �

¼ 0: ð20Þ

Additionally, the boundary condition (5) cannot be considered as
the order of the differential Eq. (20) becomes lower than the general
case (1). Eq. (20) admits the trivial solution of a current of constant
height with a vertical front. Physically, a smooth transition to null
depth is observed at the current front; the rounding of the leading
edge is due to the residual effect of the free-surface slope.

Inspection of Eq. (20) shows the scaling xN 
 v�tðsin hÞ1=n for the
current length. This result does not depend on the flow parameter
a and on the channel shape parameter b, but only on flow beha-
viour index n. The height scales as h 
 hf tða�1Þ=F1 . For a ¼ 1, the



Fig. 5. The prefactor gN for various shapes of the cross-section computed
integrating numerically the system in Eq. (22). The curves refer to different values
of the lower limit of integration: �40 (dashdotted), �100 (dashed), �1000 (dotted),
�10000 (continuous).

Fig. 6. The dimensionless depth of a constant flux current propagating downslope
in a porous channel of power-law cross section described by b. The curves are for
b ¼ 0:5 (dashdotted), b ¼ 1 (dotted), b ¼ 2 (dashed), and b!1 (continuous).
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asymptotic behaviour upstream discussed in Section 4.2 is
recovered.

4.2. Constant flux injection

A constant flux gravity current (a ¼ 1) represents a special case
since the advancement of the nose and the input flux scale like t.
For large values of t the current reaches a steady state with uniform
thickness, except near the nose (see [8,15]). Mass conservation
suggests that the uniform thickness is

hf ¼
q

/Acv�ðsin hÞ1=n

 !1=F1

: ð21Þ

This value is reached asymptotically upstream for t !1, whereas
near the nose the current height drops to zero with a shape repre-
sented by the function f ðgÞ. Substituting the similarity variables
(19) in Eqs. (17) and (18) yields

@

@g
f F1 @f

@g

� 	
þ g

2
@f F1

@g
¼ 0; f ðgNÞ ¼ 0;

Z gN

�1
ð1� f Þdg ¼ 0; ð22Þ

/hF1
0

v�
n

h0t cot hðsin hÞ1=n
� �1=2

Ac

Z gN

gt

f F1 dg ¼ qt; ð23Þ

with

gt ¼ �
v�tðsin hÞ1=n

v�
n

h0t cot hðsin hÞ1=n
� �1=2 ;

gN ¼
xNðtÞ � v�tðsin hÞ1=n

v�
n

h0t cot hðsin hÞ1=n
� �1=2 ; ð24Þ

where the integral condition in Eq. (22) is a boundary condition for
the function f. The computation of the profile requires: (i) the numeri-
cal integration of the system of integro-differential equations given
by (22), with the function f satisfying the constraint at the front end
and the integral constraint, and gN computed by iterations; (ii) the
solution of Eq. (23) to evaluate the coefficient h0. Since the function
f is monotonic, it results h0 > hf with h0 approaching hf for large
times. The numerical integration of the PDE in Eq. (22) requires an
additional condition near the front end, obtained expanding the func-
tion f ðgÞ to first order in Frobenius series near gN:

f 0ðgN � �Þ ¼ �
gN

2
; ð25Þ

being � a small quantity.
Fig. 5 depicts the prefactor gN versus b. The improper integral in

Eq. (22) was solved numerically approximating the lower limit of
integration with a finite quantity ll. Hence Fig. 5 shows values of
gN for different values of ll, to check the sensitivity of the solution
to this approximation. It is seen that gN decreases as the cross-sec-
tion shape becomes flatter, while the influence of the numerical
approximation is negligible. The current profile in the moving
reference is shown for different values of b in Fig. 6. The profile
near the front end of the current is weakly dependent on the cross
sectional shape.

Fig. 7 illustrates the extent of the approximation induced by Eq.
(15) (hereafter ‘approximate model’, represented by Eq. (16),
against the ‘exact model’ represented by Eq. (3)) as a function of
the similarity variable for a typical set of problem parameters.
The numerical integration of the exact model is performed by
adopting the technique reported in [29]. In general, the difference
between the exact term and its approximate expression is
negligible along most of the current profile; near the nose, the
approximation introduces an underestimation of the solution for
shear thinning fluids, and an overestimation for shear-thickening
fluids, whereas the error is null for Newtonian fluids. The error:
(i) is larger for small b, corresponding to narrow cross sections;
(ii) increases for decreasing bottom inclination h; (iii) is generally
negligible for h > 2�; (iv) is still limited for h > 0:5�. The approxi-
mated model induces a reduction of the average (negative) shear
rate for shear thinning fluids, and an increment of the average
shear rate for shear thickening fluids. Since the correction term is
significant only in presence of non zero shear rate, we expect that
the overall effects of the approximation are limited to the nose of
the current and, hence, become progressively less important for
long currents, characterised by a uniform thickness for most of
their length.

To appreciate the effect of the approximation on the current
profile, the reader is referred to Section 5.2 discussing the experi-
mental results. Fig. 13 therein shows the comparison between
the thickness of the current, computed at different times with
the approximate and the exact models. It is confirmed that the dif-
ference between the results of the two models reduces over time,
with the approximate model profiles characterised by a smaller
space gradient respect to the exact model. In passing, note that
the approximate model performs better than the exact one in com-
parison with the experiments. This is because in the experiments
the vertical velocity of the advancing fluid is not negligible near
the source and at early times, and acts in smoothing the space gra-
dient of the current profiles, mimicking the approximate model.
See [29] for a discussion on the role and importance of the vertical
velocity components in free-surface flows in porous media. It is
also noted that at large times (long currents) the front end position
is almost unaffected by the approximation, while at smaller times



Fig. 7. Comparison between the term ð1� cot h@h=@xÞ1=n (continuous curve) and 1� ð1=nÞ cot hð@h=@xÞ (dashed curve) for b ¼ 0:5;1;2; h ¼ 0:5�;2�;5� ; n ¼ 0:75;1:5.
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(short length currents) there are modest differences between the
approximate and the exact model. In many aspects, the con-
tribution of the term / @h=@x is similar to that of surface tension
effects: it acts in rounding the front of the current which otherwise
would be vertical. See Eq. (20) and the corresponding discussion.

5. Experiments

5.1. Experimental setup

A series of laboratory experiments was conducted at the
Hydraulics Laboratory of the University of Parma to test the theo-
retical formulation. The experiments were set up as follows. Two
channels made of Polymethyl methacrylate (a transparent
thermoplastic), and having a 2000 mm length, were set up
between two end plates (Fig. 8). The first channel had a triangular
shape with a vertex angle of 45�, while the second had a quarter-
circle cross-section with a 95 mm radius. These two cross sections
are respectively equivalent to the triangle with a vertex angle of
90� and to a semicircle, due to the symmetry with respect to the
median vertical plane and to the negligible influence of the wall
boundary layer at said plane. The first channel represents the case
b ¼ 1, while the second approximates the case b ¼ 2 when the cur-
rent height is small compared to the channel radius. Both channels
lay on four adjustable feet and were levelled to the horizontal or
inclined to the desired inclination angle in the longitudinal
direction, using an electronic spirit level with an overall accuracy
of 0:1�.

The porous medium was created upon gently pouring glass
ballotini of uniform diameter in the channel, and letting the med-
ium compact under the action of gravity. Four different diameters
of the ballotini (d ¼ 1; 2; 3; 4 mmÞ were employed to reproduce
four different media, each with beads of uniform size. The med-
ium porosity was determined performing specific preliminary
tests aimed at reproducing how the glass beads used to fill the
channel deposit themselves. The porosity values thus determined
did not differ significantly between the four media (the differ-
ences were within the experimental error), hence an average
value / ¼ 0:38 was assumed, close to that adopted in the experi-
ments by Golding and Huppert [15]. To ensure the porosity value
to be spatially uniform and constant for all tests, (i) the protocol
adopted to create the porous medium in the preliminary tests
was retained across the experiments; (ii) the channels were
gently shaken after pouring the beads. The Kozeny–Carman equa-

tion, k ¼ /3d2
=½180ð1� /Þ2�, was used to evaluate the medium

permeability.
In all experiments, an intruding current of non-Newtonian

fluid displaced the air saturating the porous medium. To investi-
gate the impact of the rheology, glycerol, water and Xanthan
gum were mixed in various proportions to obtain four different
shear-thinning fluids. These had a flow behaviour index, a con-
sistency index and a density in the respective ranges



Fig. 8. (a) A schematic of the experimental apparatus. (b) A snapshot of a constant volume flux current propagating in a triangular inclined channel filled with a uniform
porous medium. The image refers to Exp. #38.

Table 2
Parameter values used for experiments. The symbol ‘a’ indicates a test of the series
reported in Ciriello et al. [28], the symbol * indicates that a video is available as
supplementary material. In the second column the symbol ‘c’ indicates a semicircular
cross-section with radius r ¼ 95 mm, the symbol ‘t’ indicates a triangular cross-
section with vertex angle 45� (i.e. a right triangular section).

Exp. Shape h
(deg)

a d
(mm)

q
(ml s�aÞ

n el
(Pa sn)

q
(kg m�3)

1a c 0.0 1 2 0.734 0.42 0.36 1160
2a c 0.0 1 2 1.04 0.42 0.36 1160
3a c 0.0 1 2 0.68 0.42 0.67 1160
4a c 0.0 1 3 0.46 0.42 0.67 1160
5a c 0.0 1 3 0.43 0.66 0.33 1135
6a c 0.0 1 3 0.275 0.66 0.33 1135
7a c 0.0 1 4 0.233 0.66 0.33 1135
8a c 0.0 1 4 0.428 0.66 0.34 1136
9a c 0.0 1 1 0.43 0.66 0.3 1136
10a c 0.0 1 1 0.305 0.7 0.067 1080
11a c 0.0 1 1 0.14 0.75 0.018 1135
12a c 0.0 1 3 0.583 0.75 0.023 1135
13 c 0.0 0 4 400 0.7 0.067 1080
14 c 0.0 0 2 280 0.7 0.067 1080
15 c 0.0 0 3 500 0.7 0.067 1080
16 c 0.0 0 2 288 0.66 0.34 1136
17 c 0.0 0 4 400 0.66 0.15 1174
18 c 0.0 0 2 237 0.66 0.15 1174
19* c 0.0 0 3 279 0.66 0.15 1174
20 c 5.2 1 2 1.33 0.75 0.0225 1135
21 c 5.3 1 1 0.55 0.75 0.0225 1135
22 c 5.3 1 3 1.46 0.75 0.0285 1135
23 c 5.2 1 4 2.8 0.75 0.0309 1135
24 c 3.1 1 3 1.05 0.75 0.0309 1135
25 c 3.1 1 1 1.09 0.75 0.0225 1135
26 c 3.1 1 2 0.78 0.75 0.0225 1135
27 c 3.1 1 4 0.67 0.75 0.0309 1135
28 t 0.0 1 2 0.44 0.75 0.015 1135
29* t 0.0 1 4 0.43 0.66 0.25 1134
30 t 0.0 1 3 0.4 0.66 0.26 1134
31 t 0.0 1 1 0.36 0.66 0.26 1134
32 t 0.0 0 3 372 0.66 0.26 1134
33 t 0.0 0 4 916 0.66 0.26 1134
34 t 0.0 0 2 813 0.66 0.26 1135
35 t 5.4 1 4 1.35 0.75 0.0195 1134
36 t 5.2 1 3 0.86 0.75 0.0215 1134
37 t 3.2 1 2 0.86 0.75 0.0215 1135
38 t 3.2 1 1 0.71 0.75 0.0195 1134
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n¼0:42�0:75; el¼0:015�0:67 Pa sn and q¼1080�1174 kg m�3.
In particular, 60% (vol) glycerol, 40% (vol) water, 0:1% (weight)
Xanthan gum resulted in the fluid with n ¼ 0:42; 50% (vol) glyc-
erol, 50% (vol) water, 0:1% (weight) Xanthan gum resulted in
n ¼ 0:66; 30% (vol) glycerol, 70% (vol) water, 0:06% (weight)
Xanthan gum in n ¼ 0:70; 50% (vol) glycerol, 50% (vol) water,
0:01% (weight) Xanthan gum in n ¼ 0:75.

The rheology of the fluid was assessed independently with a
parallel plate rheometer in the low shear-rate range ( _c < 5 s�1),
with an associated uncertainty equal to 	 2:7% and 	 3:4% respec-
tively for the fluid behaviour and consistency indexes. The mass
density was measured by a pycnometer with an absolute uncer-
tainty of 1 kg m�3 and the temperature was controlled with a mer-
cury-in-glass thermometer (0:02 �C resolution).

For both channel shapes, constant volume (a ¼ 0) and constant
flux (a ¼ 1) currents were tested. In both cases, the fluid was
injected through an injection zone shaped as a vertical cylinder
of diameter 9.5 mm, set at one end of the channel and delimited
by a brass net. In the vicinity of the source inlet, the flow-field
has a 3-D structure; however this effect rapidly dissipates down-
stream, considering that the representative width of both channels
was of the same order of the length scale of the cylinder. Moreover,
3-D effects are much less relevant for gravity flows in porous
media than for gravity currents with a free surface; consequently,
the need for a source inlet covering the entire width of the tank
(e.g. [30]) is lessened. In particular, the effect of a strongly distorted
inflow on gravity-driven flow in porous media was studied by Lyle
et al. [9]. The authors concluded that the flow field alterations
induced by the position of the inlet are minor, except near the
source, and do not modify the subsequent evolution of the current.

For constant volume experiments, a volume of liquid varying
from 237 to 916 ml was poured from a beaker into a funnel con-
nected to the injection zone through a short tube; the injected vol-
ume was measured by weighing the initial and final volume in the
beaker and dividing by the mass density, with an overall uncer-
tainty 	 1%. The time needed to release the volume was less than
20 s in the most critical conditions (large volume and small glass
beads, Exp. #34). This time span is negligible respect to the dura-
tion of the experiments (the shorter one, Exp. #13, lasted 710 s)
and the current quickly lost memory of the injection details. For
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constant volume flux experiments, a flow rate varying from 0.36 to
2.08 ml s�1 was supplied by means of a Mariotte bottle equipped
with a solenoidal control valve. The injected flow rate was deter-
mined before testing, with an overall uncertainty equal to 	 2%,
by weighing the volume of fluid exiting the bottle during a given
time interval. The measure was repeated at the beginning and
end of each test.

The distance of the current from the injection cross section was
recorded at intervals of 10� 60 s by means of a high-resolution
photo camera. A second photo camera recorded lateral views of
the current at its intersection with the vertical plate delimiting
the channel along its axis; the resulting images were analysed
using a proprietary software to transform the pixel positions into
metric coordinates and detect the current profile, with an overall
uncertainty of 1:5 mm. The resulting data were space averaged
over ten diameters, and adjusted for the effect of the capillary
fringe, following the procedure developed by Longo et al. [22].
Fig. 9. Experimental (symbols) and theoretical (solid lines) results for the horizontal sem
time. Left panel: experiments with constant volume flux (a ¼ 1); right panel: experimen
have been multiplied by 2 for tests with d ¼ 2 mm, by 4 for tests with d ¼ 3 mm, and by 8
panel were already presented in [28] and are shown for comparison.

Fig. 10. Same as Fig. 9 but for the horizontal triangular channel. Left panel: experiments
(a ¼ 0). The front end positions (measured and theoretical) have been multiplied by 2 for
in order to be separated in the diagram.
A total of 38 experiments were performed with the two differ-
ent cross-sections, horizontal and inclined channels, a constant
volume (a ¼ 0) and a constant volume flux (a ¼ 1). The subset of
12 experiments conducted by our group with a ¼ 1 in a horizontal
semicircular channel, already discussed in [28], is complemented
by 26 additional experiments with both a ¼ 0 and a ¼ 1. All 38
experiments are listed in Table 2 and discussed in the following.

5.2. Results and discussion

The non dimensional scaled experimental position of the cur-
rent front xN is displayed in Fig. 9 against time for horizontal chan-
nels of semicircular cross section (b ¼ 2) for the two cases of
constant volume flux (a ¼ 1, left panel) and constant volume
(a ¼ 0, right panel), along with the corresponding theoretical pre-
dictions. Similar results are shown in Fig. 10 for horizontal chan-
nels of triangular cross-section. While the experimental data
icircular channel; scaled non dimensional front position xN against non dimensional
ts with constant volume (a ¼ 0). The front end positions (measured and theoretical)
for tests with d ¼ 4 mm, in order to be separated in the diagram. The data in the left

with constant volume flux (a ¼ 1); right panel: experiments with constant volume
tests with d ¼ 2 mm, by 4 for tests with d ¼ 3 mm, and by 8 for tests with d ¼ 4 mm,
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differ from the theoretical predictions at early time, the agreement
is very good at late time; this holds true for both the time exponent
(represented by the inclination of the theoretical curve in log–log
scale) and the coefficient. Note that the self-similar solution proves
useful in interpreting experimental results even outside asymp-
totic bounds, as ab < 1.

It was observed during the experimentation that the profile of
the advancing current was quite smooth, especially for tests with
the smaller diameters of the ballotini. In experiments with con-
stant volume release, tests with glass beads of the smallest diame-
ter (d ¼ 1 mm) were not performed, as the low permeability of the
porous medium entailed a rapid growth of the current thickness at
early time, with a consequent violation of most model hypotheses,
as discussed in Section 3.2. In general it is expected that for cur-
rents of constant volume, part of the fluid is entrapped due to
capillarity effects and hence is subtracted from the current volume.
The correction operated for the capillary fringe is effective in
Fig. 11. Experimental (symbols) and theoretical (solid lines) results for inclined semicirc
(a ¼ 1). Left panel: bottom inclination h ¼ 3:1� 3:2�; right panel: h ¼ 5:2� 5:4� . The fron
d ¼ 2 mm, by 4 for tests with d ¼ 3 mm, and by 8 for tests with d ¼ 4 mm, in order to b

Fig. 12. Experimental (symbols) and theoretical (solid lines) results for horizontal trian
#34, constant volume (q ¼ 813 ml; d ¼ 4 mm; n ¼ 0:66; ~l ¼ 0:25 Pa sn; q ¼ 1135 kg
n ¼ 0:66; ~l ¼ 0:26 Pa sn; q ¼ 1134 kg m�3). For clarity, only one point of every ten is p
removing these effects, that are not included in the model. These
effects are more relevant when the height of the current reduces
over time, as is the case for a constant volume injection, and may
have contributed to the deviations from the theory observed at
early times for a ¼ 0. After correcting for capillary effects, a small
initial overprediction of theory to experiments is expected for con-
stant volume tests, due to (moderate) inertial effects. No significant
inertial effects are expected for constant volume flux experiments.
However, the experimental data indicate a non deterministic over-
or under-prediction of the theory. This behaviour can be addressed
to the numerous physical limitations in reproducing the inflow
conditions and ensuring the homogeneity and isotropy of the por-
ous medium. These limitations include possible local porosity gra-
dients of the medium around the injection zone, and the boundary
effect of the walls, which locally increase the porosity and favour
the onset of preferential paths. At later stages of propagation, the
disturbance induced by the source is lost and the current enters
ular and triangular channels; front position xN against time for constant volume flux
t end positions (measured and theoretical) have been multiplied by 2 for tests with
e separated in the diagram.

gular channels; shape function against reduced similarity variable. Left panel: Exp.
m�3). Right panel: Exp. #29, constant volume flux (q ¼ 0:43 ml s�1; d ¼ 2 mm;

lotted.



Fig. 13. Experimental (symbols) and theoretical (red solid lines) results for a constant volume flux gravity current in a triangular channel of inclination h ¼ 3:2�; dimensional
current height against down-channel position at six different times. The dashed black lines are the numerical solution of the differential problem without the approximation
in Eq. (15). Exp. #38 (q ¼ 0:71 ml s�1; d ¼ 1 mm; n ¼ 0:75; ~l ¼ 0:0195 Pa sn; q ¼ 1135 kg m�3). For clarity, only one point of every ten is plotted. The error bar refers to �
one standard deviation.
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the intermediate asymptotic regime described by the present theo-
retical model.

The position of the front end xN of currents of constant volume
flux (a ¼ 1) is depicted in Fig. 11 against time for inclined channels
of semicircular and triangular shape and two different inclinations.
Results are represented in dimensional form since no satisfactory
dimensionless formulation was found. The theoretical curves,
derived via numerical integration of Eqs. (22) and (23), are not
rectilinear on a log–log plot, even though they seem to be. Again,
the agreement between theory and experiments is good, with an
almost perfect overlap at large time.

The current profile was also recorded and compared with the
theory for Exps. #34 and #29. Fig. 12 depicts the experimental shape
function against the reduced similarity variable for flows of a shear-
thinning fluid in a horizontal triangular channel. The left panel
shows results for a constant volume current (Exp. #34); early time
data are not shown since they represent the current profile during
pouring of the fluid, and thus are not representative of model
assumptions. At late time, the agreement between experiments
and theory is very good. The profile is slightly lower than predicted
by the theory near the front. This effect can be addressed to the
increased porosity near the corner due to the presence of the wall;
this in turn reduces the steepness of the gradient associated to the
flux. Results for constant volume flux (Exp. #29), depicted in the
right panel, show again, in general, a good agreement between the-
ory and experiments. Early time discrepancies near the origin and
the front tend to become negligible at large time. A comparison
between the theoretical and experimental height was also per-
formed for inclined triangular channels, as shown in Fig. 13. The
theoretical profile is well reproduced by the experiments, except
for data near the current front, with experimental results always
within the error bars. The physical explanation is that steady state
conditions, with a uniform current thickness far from the nose, are
not reached due the finite length of the channel, with a consequent
limited time of injection. As a result, the profile of the current near
the front end differs from the theory.

6. Conclusion

In this study we have analysed theoretically and experimentally
the effects of non-Newtonian fluid behaviour on the propagation of
currents in a porous medium confined by symmetric rigid bound-
aries delimiting a channel of assigned shape. Self-similar scalings
were derived for the current length and height for propagation in
horizontal and inclined channels, with the scaling exponents being
a function of model parameters a (rate of increase of current vol-
ume with time), n (flow behaviour index), and b (cross-sectional
shape). Results obtained exhibit a partial analogy with free-surface
flow in open channels without porous media [27], with differences
between the two cases deriving from the momentum equation
adopted (Darcy or Navier–Stokes).

The speed, height, and aspect ratio of horizontal currents are
influenced by all model parameters. This dependence is modulated
by two critical values of a;ab ¼ n=ðnþ 1Þ and an ¼ ð2bþ 1Þ=b. These
threshold values govern the decrease/increase with time of the cur-
rent height and speed/aspect ratio, respectively. For n in the interval
0.5–1.5 (including shear-thinning, Newtonian and shear-thickening
fluids), ab varies between 0.33 and 0.6; for b in the interval 0.25–2
(narrow fractures to semicircular channels), the corresponding
range of an is 2.5–6. Hence typical values of ab and an are of order
1=2 and 3, respectively, and the former is much more likely to be
exceeded than the latter in environmental flows. When the critical
values of a are exceeded, the current does not respect asymptoti-
cally model assumptions, i.e.: (i) for a > ab, the current profile will
eventually spread beyond the channel boundaries; (ii) for a > an,
the thin current approximation will be violated. These are asymp-
totic limitations, and at finite times, the range of the applicability
of the solution is wider; this can be checked following Ciriello
et al. [12]. Earlier studies on gravity currents in porous media
[8,9,15] have shown that self-similar solutions for the spreading of
viscous gravity currents are intrinsically robust, and prove useful
in interpreting real data, even outside asymptotic bounds.
Additional factors supporting this assumption are:

� Overflow scenarios occur only after a considerable time, when
the profile increase is slow and/or the channel cross section is
elongated in height.
� The invalidity of the Dupuit approximation: (i) is mitigated by

the favourable effect of downward vertical velocities, reducing
the current thickness and smoothing the spatial pressure gradi-
ent; (ii) is a local phenomenon concentrated near the injection
zone, with limited effects on the overall current development.

The propagation of currents in inclined channels is affected
mainly by their volume (a) and rheological behaviour (n), with a
marginal influence of channel shape (b). Constant flux currents
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(a ¼ 1) reach at long times a steady state condition with a uniform
thickness profile except near the front end. In variance with
Newtonian fluids, it is necessary to approximate the forcing term
of the local mass balance equation to derive a self-similar solution
for inclined channels. The extent of this approximation depends on
the shape of the cross-section and has opposite sign for shear-thin-
ning and shear-thickening fluids. The approximation generally
introduces negligible errors for channels with inclination h > 2�.
For a very small channel inclination h < 0:5�, the self-similar solu-
tion should be used with caution and a fully numerical solution to
the problem is preferable. For long-length currents, and when the
inclination is larger than a limit value (determined on a case by
case basis), the effect of the free-surface slope with respect to grav-
ity is entirely negligible (except at the current front); in this case
the uniform thickness of constant flux currents depends only on n.

Laboratory experiments conducted with different fluids
(n ¼ 0:42� 0:75) in horizontal and inclined channels of different
shape (triangular and semicircular) validated the theoretical for-
mulation for constant volume (a ¼ 0) and constant volume flux
(a ¼ 1). A good agreement was observed in both cases with respect
to front position and profile, despite the fact that a > ab for hori-
zontal currents with constant volume flux. The major discrepancies
between theory and experiments were observed at early times of
propagation, when the methodology of injection and the geometry
of the inlet are sources of disturbance for the current spreading.
However, the effects of these disturbances disappear at a late stage
of propagation.

Overall, the proposed model is robust and displays a good agree-
ment with experimental results in the investigated range of
parameters. The non-Newtonian rheology significantly affects
model results; hence the adoption of the correct constitutive equa-
tion is crucial in predicting both the current extension and shape.
The sensitivity to the rheological index n is larger for shear-thinning
than for shear-thickening fluids. The influence of the channel shape
(parameter b) is significant up to b ¼ 3, less so for larger values.

In this work, the current was considered to be completely con-
fined by the boundaries. Future analysis will tackle more complex
scenarios of possible overflowing in the domain close to the injec-
tion source, with a mix of axial and channelised flow. Another pos-
sible extension of our work is the inclusion of thermal effects, that
prove to be particularly relevant in conjunction with non-
Newtonian fluid flow in porous media [31].
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