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a b s t r a c t

This paper reports on the experiments of the flows of a mixture of grains and water around a circular or
triangular cylinder, where the two-dimensional flow is driven by the internal cylinder of a Taylor–Couette
cell. The working conditions during tests are such that instabilities do not appear. Velocity measurements
of the mixture at the external surface are carried out using the PIV technique. The flow field is very
different from that of a Newtonian fluid. However, the streamline patterns look similar, if the flow
directions are ignored, as it happens for a dry granular stream. A limited recirculation zone behind the
triangular cylinder is present, whose size ismuch less than that for a Newtonian fluid and is absent for dry
granular stream. Upstream of the triangular cylinder, a zone of sediments almost at rest is present, with
a semi-circular shape and an extension independent on the Reynolds number. It seems that the flow is
controlled by factors downstream the location of interest. Vorticity scaleswith both the size of the obstacle
and the free stream velocity, and is confined near the vertices at the base of the triangular cylinder.
Compared to the vorticity field for the Newtonian fluid case, it spreads more upstream. The normalized
energy of vortices has a probability distribution function with a peak and a steep reduction, but does not
scale with the Reynolds number. The contribution of clockwise and counter-clockwise vortices is roughly
balanced.

© 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

The granular flow around an obstacle is of interest in the study
of the complex rheology of a fluid, as well as in practical applica-
tions. There are numerous industrial processes, where solid objects
are present in the stream as heat exchanger or are used as weld
lines in polymer processing applications. They are also relevant
in food manufacturing, chemistry and pharmacy, and in measure-
ments instrumentation, where the vortex shedding flow meter is
based on the detection of shedding frequency of eddies generated
by an obstacle inserted in the stream.

The literature includes several references on Newtonian fluid
flows around a circular cylinder (see [1]), and the potential flow
theory of infinitely long wings that uses conformal mapping of
flow around a circular cylinder. [2] present a detailed analysis of
the flow of water and polymer additive around a circular cylinder,
while [3] analyze the gravity-driven flow of mustard seeds around
a cylinder, adopting a kinematic description based on a stochastic

∗ Correspondence to: Cambridge University, Engineering Department, Cam-
bridge, UK. Tel.: +39 0521 905157; fax: +39 0521905924.

E-mail address: sandro.longo@unipr.it (S. Longo).

0997-7546/$ – see front matter© 2012 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.euromechflu.2012.11.001
model. Other more detailed analyses refer to the kinematics of
complex fluids flows around bodies [4].

Despite the widespread use of cylindrical and non-circular
obstacles in many applications, the studies on this geometry effect
are scant, especially for triangular cylinder with a vertex facing
downstream.

There are limited experimental and theoretical analyses for
Newtonian fluids with the numerous possible conditions (orienta-
tion respect to the incoming flow, characteristics of the incoming
flow, aspect ratio of the obstacles, etc.), let alone non-Newtonian
fluids. [5] numerically analyzed the flow of incompressible New-
tonian fluids around a triangular cylinder with the apex facing
upstream, while [6] made an extensive numerical simulation for
the 2-D laminar flow of power-law fluids over an equilateral tri-
angular cylinder in both configurations, i.e. with apex facing up-
stream and downstream. A few experimental investigations about
the shedding vortices from the triangular cylinders or prisms in
cross flow have been reported in high Reynolds-number turbulent
flows, e.g. [7–10].

The present experiments deal with a mixture of grains and
water — a fluid with a complex rheological behavior. A crude
analogy can bemade between this flowwith the dry granular flow,
with air as inter particles fluid. Usually, numerical simulation is

http://dx.doi.org/10.1016/j.euromechflu.2012.11.001
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Nomenclature

. . .∗ Non dimensional operator
δ Thickness of the gap
Γ Shear rate, circulation
λ Linear concentration of the solid phase, eigenvalue
µ Dynamic interparticle fluid viscosity
ν Kinematic viscosity of the interparticle fluid
νmixture Apparent kinematic viscosity of the mixture
ρs Mass density of the solid phase
σ Standard deviation
ω, ωz Rotation rate, vorticity component along z
� Tensor, antisymmetric part of the velocity gradient

tensor
a1, b1, c1, d1, e1, a2, b2, c2, d2, e2, c Coefficients
b Length of the edge of the base of the triangular

cylinder
Ba Bagnold number
C, C0 Void concentration of the grains (ratio between

the volume of sediments and the bulk volume),
maximum void concentration of the grains

CCW Counterclockwise
CW Clockwise
d Grain diameter
D Diameter of the circular cylinder, of the cylinder of

the cell (internal or external)
E Energy
FOV Field of view
lk Length of the kernel
L Length of the recirculating zone
Lx,y(· · ·) Polynomials for spatial correction along x, y
LDA Laser Doppler Anemometry
NDH Nedderman R.M., Davies S.T., Horton D.J. (1980),

Powder Technology 25 215–223
pdf Probability density function
PIV Particle Image Velocimetry
PMMA Polymethyl methacrilate
POD Proper Orthogonal Decomposition
R, r Radius of the cylinder (internal, external) radius of

the eddies
rpm Revolutions per minute
Re, Rec Reynolds number, critical Reynolds number
S Tensor, symmetric part of the velocity gradient

tensor
s Wall thickness
t, dt Time, time increment
Ta, Tac Taylors number, critical Taylors number
U0 Reference asymptotic velocity
Ux,Uy Horizontal, vertical instantaneous velocity
U, V Horizontal, vertical instantaneous velocity
U ′
x,U

′
y Horizontal, vertical fluctuating velocity

U ′, V ′ Horizontal, vertical fluctuating velocity
x, y Spatial co-ordinates
x, x′ Position vector, dummy position vector
xc, xm, yc, ym Spatial co-ordinates measured, corrected

used for studying granular flows, and in most analysis the drag
of obstacles in the granular stream is of major interest. [11] used
discrete element simulations to investigate a two-dimensional
dilute dry granular flow around an immersed cylinder (no inter-
particle fluid) in order to evaluate the drag coefficient. They found
that the drag coefficient depends on the Mach number, expressed
as the ratio of the asymptotic velocity and the celerity of sound, and
on the Knudsen number, expressed as the ratio between the mean
free path of particles and the diameter of the cylinder. They also
depicted some properties of the granular flow, including velocity,
temperature (a measure of the velocity fluctuations) and the solid
fraction field. [12] experimentally studied the flow around a fixed
cylinder immersed in a uniform dry and dense granular flow,
including the vorticity and the granular temperature fields. They
found that the drag force is independent of the mean flow velocity
and scales with the asymptotic stress.

The drag behaves differently between the obstacles moving
in the granular medium at rest and the obstacles at rest placed
in a granular stream. In both cases, the presence of grains at
high concentrations near the obstacles induces stress transmission
through contact forces and leads to a jammed state. This jammed
state is a character of granular flows, different from classical
Newtonian fluid flows. Jamming can be caused by the gravity force
and compressive stress. The main kinematic effect of jamming is
the need for a proper re-organization of the flow pattern around
obstacles inside a granular medium. The length scale of the re-
organization pattern is different in the two extreme situations
and generally enhances the disturbances by the obstacles, which
subject strong fluctuations of the drag force. If the granular
medium is at rest (on average), the drag usually depends little on
the speed or on the form of its cross-section [13], except at low
velocities. If the obstacle is at rest, a much stronger dependence on
granular velocity is expected, with a low resistance similar to that
for a usual fluid (a quadratic law at high velocities). These results
can be drastically different if a lubricant interstitial fluid is present.
Some numerical experiments on the interaction of a stream of
granular particles with a resting obstacle in two dimensions [14]
show that, at low velocities, the drag is proportional to the 3/2
power of the velocity, whereas at high velocities, the drag recovers
its usual quadratic dependence on velocity.

Compared to other flows, granular flows are often characterized
by significant variations in bulk density. Experiments by [15] show
that a granular stream impacting an obstacle or being regulated
by a wall has different zones of compression and expansion with
shocks and discontinuities. In these experiments, it is very difficult
to measure fluid velocity. It is possible to use Laser Doppler
Anemometry (LDA) [16] and Particle Image Velocimetry (PIV) [17]
through a transparent wall. While PIV exactly displays the particle
motion, results usually underestimate the real velocity due to the
wall boundary layer (unless it is used for measuring a free granular
surface), but fortunately, this error is limited due to slip of granular
flows at the boundary.

The flow of a fluid–granular mixture is characterized by three
main regimes: (i) a macroviscous regime with essentially Newto-
nian behavior, (ii) a dilatant regime with interparticle collisions
dominant, and (iii) a quasi-static regime, with stresses transferred
mainly as frictional stresses. Several models have been developed
and tested for dry grain rapid granular flows, mainly based on the
assumption of an isotropic granular temperature, small dissipa-
tion and low to mid grain void ratio. Significant progress has also
been made regarding the granular temperature anisotropy. How-
ever, little has been done to include the effects of interstitial fluid
since Bagnold’s pioneering work [18]. Bagnold was interested in
the rheology of the mixture, and developed a model widely used
for its simplicity that makes it an excellent tool for practical com-
putations or simplified approaches. Despite several critics [19] and
the limitations of the model (e.g., the evidence that it does not
develop a constitutive equation, lacking a tensorial formulation),
Bagnold’s model is still adopted at least for concentrated suspen-
sions of grains in water at low shear rates (Bagnold’s macroviscous
regime). However, Bagnold’s model does not consider the interac-
tion between the mixture and solid boundaries.

The aim of the present experiments is to provide information
on the kinematics of the flow fields past a circular cylinder and a
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Fig. 1. Experimental set up.
triangular cylinder immersed in a fluid–granular mixture stream
with grains at high void concentrations, including the analysis
of isolated vortices. The tests with the circular cylinder have
been partially analyzed in [20]. Compared to most experiments
in the literature, the presence of the water as the inter-particle
fluid represents a significant variation, since only physical [3,12]
and numerical experiments (e.g. [21]) with either dry grains
or homogeneous non Newtonian fluids have been documented
[4]. Such mixtures are common in environmental flows (but at
higher Reynolds number), like debris flows, and in the industry,
like fluidized beds for chemical reactions. The device used to
generate the stream is a Taylor–Couette cell, which, in the working
conditions during the tests, is far from the instability development
level. Momentum is transferred from the internal rotating cylinder
through collisions with the grains of the mixture and through a
(limited) wall stress acting on the fluid phase. The device is easy to
control and does not suffer from the limitations typical of channels
with recirculating mixture, like varying void concentration of the
grains and free surface instabilities. The use of almost neutrally
buoyant grains limits gravity effects that would induce a normal
stress increase with depth. Note that gravity, which acts as a
source of momentum in a gravity channel, is a disturbing effect
in this device because it favors particle segregation and grain void
variation.

In Section 2, we describe the experimental set-up and the
measurement techniques. In Section 3 we describe the techniques
for data analyses. In Section 4 there is the presentation and
discussion of the experimental results, with the description of the
flow field, including the vorticity, with the details on the vortices
statistics. Conclusions are reported in the last section.

2. Methodology

2.1. Experimental setup

Experiments were performed in a concentric-cylinder Tay-
lor–Couette shear cell (Fig. 1), with an internal rotating vertical
cylinder made of stainless steel with a diameter Dint = 167 mm
and an external fixed cylinder made of Polymethyl methacrylate
(PMMA) with a diameter Dext = 190 mm. The radius ratio is equal
to Dext/Dint = 1.137. The height of the cell is 340 mm, the wall
thickness of the external fixed cylinder is s = 5 mm and the an-
nular gap between cylinders, representing the shear section, is
δ = 11.5 mm. The internal cylinder is in motion, in order to trans-
fer momentum to the granular mixture. Its wall is roughed by glu-
ing sandpaper to it. The sandpaper has a roughness comparable
with the size of the grains; its overall thickness is less than 1 mm.

The internal surface of the PMMA cylinder is smooth and allows
almost free slip of the grains. The driving mechanism for the
stainless-steel internal cylinder is a stepper with a resolution of
0.36 degrees per step, controlled by a computer and connected
to a coaxial mechanical gear 1:6 in order to increase the torque.
The gear reduction also increases the resolution of the driving
mechanism to 0.06 degrees per step of the internal cylinder.

Testswere carried outwith amixture ofwater and artificial clay
grains used for thermal insulation purposes, whose commercial
name is Leca. The grains were sorted to have a diameter of
d = 0.25–0.50 mm. They are almost spherical and have a specific
weight nearly equal to 1.0. This low value is due to the presence
of air trapped in the particles during the production process.
Sorting for the specific weight was necessary to eliminate floating
particles. The choice of almost neutrally buoyant particles is
necessary to reduce to a minimum the normal effective stress
increment due to gravity, which would reduce grain mobility,
especially in the deeper layers.

The maximum solid fraction, defined as the ratio between the
volume of sediments and the bulk volume, for randompackingwas
determined bymeasuring the bulk volume of the grains at rest, the
weight of the sample and the specific weight, obtaining a value of
C0 = 0.643. During motion, the solid fraction is reduced due to
particle dilatancy and resuspension, achieving a computed mean
value of granular void concentration of C ≈ 0.56.

2.2. Measurements

Measurements were carried out in the Laboratory of Civil
Engineering ‘‘Paolo Lamberti’’ of the University of Ferrara, using
a commercial TSI PIV with a 2048 × 2048 pixel2 Video camera
TSI Power View Model 630149, fitted with a NIKOR AF D 50 mm/f
lens with an adaptor ring Nikon PK-12, which increases the focal
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by 14 mm. The light source was a Solo Nd:YAG III dual laser head
withmaximum repetition rate of 15Hz and output energy of 50mJ.
It was water-cooled and mounted on the same side of the video
camera. The layout is shown in Fig. 1.

Usually, the laser passes a cylindrical lens to generate a light
sheet. For the present purposes, the lens was removed and
substitutedwith two cylindrical lenses in series andwithmutually
orthogonal axis in order to enlarge the beam, transforming the
laser beam in a light spot able to illuminate the area detected in
the frames of the videocamera. Polarized lenses were added to the
video camera in order to eliminate reflections.

The laser light illuminates frontally the particles moving near
the transparent wall of the cell and only occasionally can reach the
second layer of particles, with a probability to go further in depth
reduced at high grain concentration. Hence most of the signal is
scattered by the particles near the wall. The position of the camera
and the lens focus were chosen in order to have a depth of field
of 20 mm that ensures an acceptable sharpness of the image in all
frames. We checked the overall performances of the measurement
system by gluing a sheet of paper with random dots to a rotating
circular plate moved by the stepper motor, exactly in the same
configuration of the tests. The measured velocity was within 1%
of the expected values.

The acquisition frequency of a couple of images was 3.75 Hz,
with a time interval between the two images ranging from 600 to
1000µs depending on themaximumparticle velocity and gradient
of velocity. In the tested condition, PIV measures the velocity of
the grain particles, which appear much brighter than the small
particles present in the interstitial fluid.

The curvature of the PMMA cylinder and the refraction generate
image distortion. An additional distortion is due to the lenses of
the video camera. We performed a numerical correction to the
acquired data. The algorithm is about the transformation of the
pixel position on the CCD of the camera onto metric position in
the plane space equivalent to the rolled cylinder surface.

The transformation is in terms of quadratic polynomials:
xc/xm = Lx (xm, ym) ≡ a1x2m + b1y2m + c1xm + d1ym + e1
ycym = Ly (xm, ym) ≡ a2x2m + b2y2m + c2xm + d2ym + e2

(1)

used to correct both coordinates. The subscript c and m indicate
‘corrected’ and ‘measured’ respectively, Lx and Ly are the poly-
nomial operators symbols adopted for correcting the two coor-
dinates, and the dimensional coefficients of the polynomials are
estimated using the best-fit criterion.

Calibration of the geometry of the field of view (FOV) follows
these steps: (1) acquisition with the video camera of a regular grid
stuck on the external surface of the PMMA cylinder. (2) Estimation
of the coordinates (in pixels) of the grid nodes, using the acquired
image. (3)Minimization of the residuals. The estimated coefficients
have an uncertainty of ≈2% at the 95% confidence level and little
correction is needed in the central part of the FOV.

Velocity computation was carried out by adopting the TSI
software based on correlation analysis of two different frames, by
using an interrogation window of 32 × 32 pixel2(≈8 × 8d2) with
50% overlap. The result is a matrix of vectors at the grid nodes, 16
pixels apart, corresponding to 1.25 mm (≈4d).

The output files contain the coordinates (in pixels) of the
interrogationwindow and the two components of the space vector
at time t (first frame) and t + dt (subsequent frame). For easy use
and subsequent elaboration, thematrix is interpolated by a regular
grid with square side length equal to 1.25 mm. For each test, 100
couples of frameswere acquired, corresponding to about 27 s long.
After the correlation analysis was complete, outliers were rejected
using the cellular neural network method [22]. The percentage of
vectors rejected varied from 6% to 16%.
3. Data analyses and experimental cases

In the following, a brief explanation of the Proper Orthogonal
Decomposition (POD) and of the technique for vortex detection is
given.

3.1. The proper orthogonal decomposition (POD)

The POD analysis was first suggested in fluidmechanics by [23],
but also has separate applications and development in numerous
other fields. The snapshot method [24] is used.

Given a series of N snapshots, the fluctuating part of the ith
snapshot is computed by subtracting the ensemble average:

U′(i) (x) = U(i) (x) −
1
N

N

j=1
U(j) (x) . (2)

The fluctuating parts of velocity components for the N
snapshots are rearranged as:

W (x, t) =

U′(1)U′(2) . . .U′(N)


=



U ′(1)
1 U ′(2)

1 . . . U ′(N)
1

...
...

...
...

U ′(1)
lm U ′(2)

lm . . . U ′(N)
lm

V ′(1)
1 V ′(2)

1 . . . V ′(N)
1

...
...

...
...

V ′(1)
lm V ′(2)

lm . . . V ′(N)
lm


(3)

where for simplicity the dependence on x of the fluctuating veloc-
ities U′(1),U′(2), . . . ,U′(N) has been omitted. The time dependence
of W (x, t) is transformed into dependence on the N snapshots
taken at different times. If the velocity components are stored in
a l×mmatrix like in a PIV frame, the matrix is reshaped into a col-
umn vector of length l × m and the dependence on x is expressed
by the subscript. After calculating theN×N autocovariancematrix
C = WTWwe solve the eigenvalue problem

CAi
= λiAi. (4)

After sorting the N eigenvalues in descent order, with λ1 >
λ2

· · · > λN , the normalized modes of the decomposition are:

ϕi (x) =

N
n=1A

i(n)U′(n)N
n=1Ai(n)U′(n)

 i = 1, 2, . . . ,N, (5)

where Ai(n) is the nth component of the normalized eigenvector
corresponding to the ith eigenvalue λi. The modes are function of
the space x. These are an optimal base of the functional space that
includes the N snapshots, in the sense that any reconstruction us-
ing another basis with the same number of modes contains less
energy. It is also the most efficient way of extracting the most-
energetic components of an infinite-dimensional processwith only
a few modes [25]. The modes are independent (orthogonal), com-
plete (describe the entire functional space) and are normalized. The
ith component of the generic nth snapshot is computed by projec-
tion of the raw velocity fields on the POD basis:

ai(n) = ϕiU′(n) (6)

and

a(n)
= Ψ TU′(n), (7)

where Ψ =

ϕ1ϕ2 . . . ϕN


. For each snapshot the number of com-

ponents is equal to the number of modes. Different snapshots have
different components on a givenmode, so the component varies in
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time. The nth snapshot is obtained by summing the reconstructed
fluctuating part to the ensemble average:

U(n) (x) =

N

i=1
ai(n)ϕi

+
1
N

N

j=1
U(j) (x)

≡ Ψa(n)
+

1
N

N

j=1
U(j) (x) . (8)

If only the first m eigenmodes are included, the nth snapshot
has the approximate expression:

U(n) (x) ≈

m

i=1
ai(n)ϕi

+
1
N

N

j=1
U(j) (x) . (9)

An eigenvalue represents the energy associated to its corre-
sponding mode, hence the first modes, after sorting, are the most
energetic. The number of modes to include in the approximate re-
construction is not only related to the content of energy to save in
the snapshot but also depends on the complexity of the flow. [26]
suggests that at least 90% of the energy should be included, with
any residual mode carrying less than 1%. Amongst some important
properties of the POD is that both original velocity fields and em-
pirical eigenmodes respect the same boundary conditions. Hence,
it is not necessary to constraint the empirical eigenmodes in order
to satisfy the boundary conditions.

In many cases, the POD applied to vorticity or to enstrophy
is more efficient, first because the number of elements is halved
respect to the two-components velocity (in 3-D analysis there is
no advantage), second because in some flows a smaller number
of modes is requested for reconstruction. A discussion on the
appropriate variable to be used in POD analyses is given in [27].

3.2. The detection of vortices

The definition of a vortex is itself variegate and its detection is
based on different approaches. The simplest definition of a vortex
is probably given by [28] and has also been practically adopted by
[29] and others. The streamlines of a vortex look roughly circular or
spiral in a reference moving with the core, hence it is necessary to
look for these patterns in the instantaneous flow. For this aim, it is
first necessary to remove the low frequency components, including
themeanmotion,which can be orders ofmagnitudes stronger than
the vortices.

Among the approaches, which give the criteria to identify a
vortex, we list the following, which are not exhaustive: (1) using
the eigenvectors’ characteristics in a phase-plane analysis [30];
(2) verifying the spatial correlation of the vorticity [31]; (3) λ2-
criterion [32]; (4) computing two ad hoc functions based on the
proper orthogonal decomposition [33].

The present approach adopts the λ2-criterion given by [32]
with a revised identification methodology, partially based on [29]
approach.

The first step is removing the mean motion, so a low pass
Gaussian filter is applied to the flow field:

Ulp (x, t) =


D
g

x − x′


U

x′, t


dx′ (10)

where

g

x − x′


= exp


−

x − x′
2

2σ 2


, (11)

where x′ is the dummy position vector and σ is the standard
deviation of the filter, which is ameasure of its size. Then the high-
pass velocity component is equal to

Uhp (x, t) = U (x, t) − Ulp (x, t) (12)
and exposes possible vortices. The choice of the standard deviation
of the filter also decides the minimum number of points around
to be included in filtering, since the kernel of the filter has length
equal to lk = 6σ − 1. If σ = 2 grid units, then lk = 11 grid units
and it is necessary to include at least 6 points around the local
origin. The cut off length of the Gaussian filter is not defined, since
its length response in Fourier space is still a Gaussian function
continuously decaying. But clearly, it is a fraction of the length of
the kernel and, in this application, it limits the maximum radius of
the vortices that can be identified.

The application of vortex detection on a structured grid data
requires the selection of the possible center of a vortex coincident
with a grid point of measurements; then the radius of first attempt
can be equal to 1 grid step and the second radius can be

√
2 grid

steps, the third can be 2 grid steps, etc., using only surrounding
points of the possible center. Instead of being tied to the grid nodes,
it is more efficient and also applicable to non structured grid data,
to implement the interpolation of the velocity field onto points
on a circle of arbitrary radius, by using an interpolation method.
After careful checking of the performances of the algorithm,
comparing the response with a set of synthetic PIV data including
knownRankine vortices, we choseσ = 2

√
∆x · ∆y and limited the

surrounding points for interpolating the velocity to ±6 grid points
in both directions.

For a given radius, the detection algorithm evaluates the angle
between the velocity in several nearby points equally spaced and
the local tangent. If at least 6 of the 8 angles are within the
range ±30° or 150°–210°, a second check is done with respect to
the variability of the velocity, which must be within a standard
deviation. If at least 6 out of 8 vectors satisfy the criteria, a positive
case is detected and stored.

The analysis is repeated for each frame and for increasing
radius, and a mask is used to prevent the inclusion in the analysis
of points inside the solid body. It frequently happens that in
the same frame and in the same location two or more vortices
with increasing radius are identified. Assuming that they are the
same vortex scanned at different distances from its center, a post
processing retains only the vortex with the largest radius. For all
the detected vortices, the circulation is computed as:

Γ =


Uhp · ds, (13)

where ds is the infinitesimal vector tangent to the circle. All
the detected vortices are stored with the coordinates of their
center, with the value of their energy proportional to the squared
circulation

E = cΓ 2, (14)

where c is a coefficient, and with their orientation, i.e. clockwise
(CW) and counter-clockwise (CCW) vortices.

The next step is to check if these vortices satisfy [32] condition,
also known as λ2-criterion. λ2 is the second largest eigenvalue
of the tensor S2 + Ω2, where S and Ω are the symmetric and
antisymmetric parts of the velocity gradient tensor, respectively.
This value has negative value where a minimum of pressure is
reached, usually in the core of a vortices. The criterion can be
applied to 3-D flows, but has a 2-D flows expression. The value of
λ2 in a 2-D flow field is:

λ2 =


∂U
∂x

2

+


∂V
∂x


∂U
∂y


. (15)

The limitations of this criterion arise from the possible three
dimensionality of the flow field and the apparent compressibility
of the present fluid. In fact, the density of the grains is not
rigorously uniform, but has largest value where grains are almost
at rest and a minimum value where strong shearing is present.
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Table 1
Set of experiments with a circular cylinder (see [20]).

Imposed rotation
rate (rpm)

Computed lateral velocity of
the driving wall (mm/s)

Measured asymptotic velocity of flow U0 (at
the transparent wall) (mm/s)

Mean radial shear
rate (s−1)

Bagnold
number (.)

Reynolds
number (.)

50 440 305 11.7 7.5 36
100 880 615 23.0 15 72
150 1320 920 34.8 22 108
200 1760 760 87.0 56 89
Table 2
Set of experiments with a triangular cylinder.

Imposed rotation
rate (rpm)

Computed lateral velocity of
the driving wall (mm/s)

Measured asymptotic velocity of flow U0 (at
the transparent wall) (mm/s)

Mean radial shear
rate (s−1)

Bagnold
number (.)

Reynolds
number (.)

25 220 194 2.3 1.5 20
50 440 356 7.3 4.6 36

100 880 554 28.3 18 56
150 1320 752 49.4 31 77
200 1760 912 72.9 46 94
3.3. The experiments

In this series of tests, two different obstacles are considered: the
first one is a circular cylinderwith a diameter equal to 15mmand a
height of 9mm. The second one is an equilateral triangular cylinder
with an edge length of the base equal to 13mmand the sameheight
of the circular cylinder. The triangle could be circumscribed in the
circle. The bases of the obstacles are glued to the internal surface of
the PMMA cylinder and are located 50mmabove the bottom of the
Taylor–Couette cell. The free surface of water at rest is at 150 mm
above the bottom, while the grain bottom is 20 mm below the free
surface. A gap of a fewmillimetres is present between the obstacle
and the internal rotating cylinder in order to avoid particle locking.
At the maximum rotation rate of the internal cylinder, the mixture
is almost homogeneous, with the mean void concentration of the
mixture equal to C = 0.557, i.e. reduced to 87% of the value at rest.

Measurements were carried out with a rotation rate from 50
to 200 rpm (a single set at 25 rpm is also available only for
the triangular cylinder experiments), corresponding to a lateral
velocity of the internal cylinder from 440 to 1760 mm/s. Some
initial tests without any obstacle show a quite regular flow field,
with limited shearing in the radial direction and in the horizontal
plane. By moving the internal cylinder, the measured sediment
velocity at the external wall (asymptotic value), a theoretical mean
value of the shearing rate in the radial direction is computed. The
data are shown in Tables 1 and 2 for the circular and the triangular
cylinder, respectively.

The actualmean value of the shearing rate in the radial direction
is less than the theoretical, due to the existence of a boundary layer
near the driving wall where the pseudotemperature level is high,
with a consequent reduction of grain concentration. The bouncing
of the sediments facilitates slip. Hence an almost uniform flow
is obtained in radial direction, with minimal effects of curvature
of the trajectories due to the annular gap. At 200 rpm, with a
circular cylinder in place, the measured velocity of the grains near
the external cylinder is surprisingly smaller than that measured at
150 rpm (see Table 2), presumably due to emerging instabilities in
the flow field even though the Taylor number is below the critical
value.

In order to qualify the flow regime, we introduce the Bagnold
number, defined as

Ba =
ρsd2λ1/2Γ

µ
, (16)

where ρs is the density of the solid phase, d is the particle diameter,
λ the linear concentration of the solid phase,Γ the shear rate andµ
the inter particle fluid viscosity. The linear concentration is related
to the solid void concentration by

λ = 1/

(C0/C)1/3 − 1


. (17)

In Bagnold’smodel, the limit for quadratic variation of the stress
is Ba > 450. Computing the Bagnold number by using the radial
shear rate results in values in the macroviscous regime or at most
in transitional regime.

To compute the Reynolds number, defined as

Re =
U0D

νmixture
or Re =

U0b
νmixture

(18)

for the circular cylinder and for the triangular cylinder, where b is
the edge length of the base, we assume a kinematic viscosity of the
mixture equal to

νmixture = 2.2λ3/2ν. (19)

A Taylor–Couette flow can be unstable. The Taylor number,
defined as:

Ta =
ω2Rint (Rext − Rint)

3

ν2
(20)

is the ratio between centrifugal forces and viscous forces and is
used to quantify the limit of stability. The critical Taylor number
for the appearance of the first unstable modes is equal to Tac ≈

1700 [34]. By assuming a pure Newtonian fluid viscosity it results
that the first instabilities arise at a rotation rate equal to ωc =

0.1157 rad/s ≈ 1.1 rpm. By assuming the equivalent viscosity
of the mixture it results ωc = 23.37 rad/s ≈ 223 rpm, slightly
larger than the maximum rotation rate of the experiments. Hence
in the conditions of the present experiments the flow is always
stable. These results should be considered with care, since it is
not demonstrated that the Taylor–Couette instability for a granular
mixture has the same critical number of the correspondent
instability for a Newtonian fluid. A further uncertainty arises in the
value of the equivalent viscosity of the mixture.

A complete analysis would require the modification of the
significant non dimensional parameters by also modifying the
inter-particle fluid viscosity, the relative size of the grains and of
the obstacle, the roughness of the lateral walls of the obstacles,
eventually the elasticity of the grains and the static angle of repose.
Considering the limitations of the experimental apparatus, most of
these variables cannot be easily modified and only the variation
of the inter-particle fluid viscosity is planned for further tests.
Referring to the relative size of the grain particles respect to the
size of the obstacle, it is expected that it becomes important if
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Fig. 2. Cumulate energy for POD of the velocity (continuous curves) and of the
vorticity (dashed curves). Thin lines: Circular cylinder, Re = 108; Thick lines:
Triangular cylinder, Re = 94.

the characteristic size of the obstacle (e.g. the edge length for a
triangular cylinder) is of the order of a few grain diameters and
reaches an asymptotic behavior for d/b ≪ 1.

The circular cylinder experiments have already been analyzed
in many aspects in [20], and most of the data herein reported refer
to the case of triangular cylinder.

4. Results and discussion

4.1. Flow velocity fields

The cumulative energy of the modes in the POD analyses of
two tests is shown in Fig. 2. For the circular cylinder, the POD
analysis applied to the velocity gives a very energetic first mode,
accounting for more than 40% of the total energy, but it is still
necessary to include many other modes to reach 90% total energy.
In comparison, the POD applied to the vorticity shows that the
first mode accounts for 87% of the total energy and it requires
less than 10 modes for reaching 90% of the energy. This behavior
indicates that the vorticity in this specific flow field is much
simpler and organized than the velocity field. The advantage is
evident in those analyses directly using the vorticity, but it is not if
the velocity is the ultimate goal. In fact, the only way to calculate
the velocity field after knowing the vorticity is to integrate the
Biot–Savart expression, which is computationally expensive, and
no simple relationship can be found between themodes of velocity
decomposition and those of vorticity decomposition. POD applied
to the triangular cylinder (thick lines in Fig. 2) shows that, while
the first five modes of vorticity still retain more energy than the
corresponding modes for velocity, the higher order modes do not.
Hence the vorticity pattern at higher ordermodes is more complex
than the velocity patterns, and thus requires more modes to be
properly described.

By considering only themodes retaining 90% of the energy, two
flow fields with the triangular cylinder are computed and shown
in Fig. 3.

A comparison between the experimental results herein, the
numerical integration results for Newtonian fluids [35] and the
experiments for a dry granular stream by [3] is shown in Fig. 4.
Nedderman et al. experiments (hereafter NDH) were made in a
vertical channel consisting of two vertical glass plates held 2.3 cm
apart by wooden spacers and with a flow section 20 cm wide. All
the observations weremade usingmustard seed of mean diameter
2.28 mm, with a static angle of repose equal to ≈32° and with a
few black kale seeds added to provide visible marker particles. The
length of the edge of the base of the triangular cylinderwas equal to
Fig. 3. Average velocity retaining 90% of the mode energy (100 couples of frames,
≈27 s) for tests at the minimum and maximum Reynolds number. The scale is
different for the two tests and the vectors shown are halved in the vertical and
reduced to one third in the horizontal direction for a better visualization. b is the
length of the edge of the equilateral triangle.

Fig. 4. Comparison between streamlines for a Newtonian fluid (upper panel, [35]),
present experiments (mid panel) and dry granular flow (lower panel, [3]). L is the
extension of the recirculating cell.

b = 100 mm hence it results d/b = 2.28/100 = 0.0288, acciden-
tally equal to the ratio d/b = 0.375/13 = 0.0288 for the present
experiments. Being difficult to evaluate the Reynolds number for a
dry granular stream, the upstream velocity is considered as refer-
ence for comparison. For NDH tests the far field upstream velocity
is equal to U0 = 0.81 m/s, roughly corresponding to the present
experiments at Reynolds number between 77 and 94. However,
NDH also reported that the streamlines do not change significantly
doubling the upstream velocity. Due to the geometry of NDH ex-
periments, with the triangular body of side equal to half the chan-
nel width, the mean velocity in the plug flow between the lateral
walls and the body is twice the upstream far field velocity. In the
lower part of the parallel sided channels between the insert and
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Fig. 5. Contour lines where velocity has dropped to 5% of the asymptotic velocity. Also [3] result for a dry granular stream is shown.
Fig. 6. Recirculation cells past the obstacle.
thewall, the streamlineswere found to curve sharply following the
side of the triangular body, without apparent re-circulation zone.
Plug flow was rapidly re-established further up the channel.

An unexpected characteristic of the measured flow field in the
present experiments and in the dry granular stream experiments is
that the streamline patterns seem to suggest, at first sight, that flow
is as one would expect for a fluid flowing in the opposite direction.
Whereas, for aNewtonian fluid, thewake lies behind the object, the
separation for a dry granular material and for a granular mixture is
ahead of the object.

The presence of the obstacle modifies the flow patterns, with a
low-velocity zone upstream, a stagnation or dead zone (sediment
at rest) downstream, a boundary layer at the interface between
the dead zone and the obstacle, and a wake. In Fig. 5, the contour
lines of the 95% of the asymptotic velocity are presented. Note the
significant difference in the velocity pattern near the two bodies.
In the case of triangular cylinder, the region of sediment at rest is
upstream and extends for ≈0.7b. It is slightly dependent on the
Reynolds number, and typically has a semi-circular shape. In the
case of a circular cylinder, the thickness of the layer of sediment
at rest is quite small immediately upstream, while there are two
symmetric recirculation patterns downstream (see [20]), with an
extension slightly dependent on the Reynolds number. For the
triangular cylinderwith a dry granular stream inNDH experiments
it can be seen that upstream the triangular insert there was a large
stagnant zone of approximately triangular shape, with inclination
of the apparent boundary considerably larger than the static angle
of repose of the particles; refer to Fig. 5. From NDH experiments
with different shape of the obstacles and from the present tests
there is a convincing demonstration that the flow is controlled by
factors downstream of the location of interest.

Past the obstacles, grains are shed off the solid surface and
a separation occurs, apparently not present for a dry granular
stream. This is also evident for Newtonian fluid, for which the
critical Reynolds number for the onset of separation is around
12 [6]. Two almost symmetric re-circulation cells are reported
(see Fig. 6), with size increasing with the Reynolds number. These
cells are confined to the side of the triangle, whereas, for a
Newtonian fluid, [35] showed that the length of the recirculation
cells measured from the apex downstream can be computed as

L/b = −1.53 + 0.118Re, 10 ≤ Re < 35, (21)

which results in much larger values than those measured in the
present tests.

This behavior is also different than that observed for dry gran-
ular flows. For a cylinder in a dry granular flow stream [36,12],
an empty region occurs downstream of the cylinder, because the
limited granular temperature cannot overcome the particle inertia
to push the grains in the transverse direction. Separation is thus
a consequence of the inertia which dominates at high Reynolds
number. In addition, non-cohesive grains cannot sustain any ten-
sile load that develops at the trailing edge of the cylinder.

It is also different from that obtained through numerical com-
putation for power-law fluids [6], who found that, for shear-
thickening fluids, the critical Reynolds number for the onset of
separation is Rec ≈ 7 with behavior index equal to 1.5.

For the granular mixture, the variation in sediment void
concentration modifies the apparent local viscosity, significantly
reducing the equivalent Reynolds number, where locally the
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Fig. 7. Average non dimensional vorticity ω∗
z = ωzb/U0 . The grey area represents the clockwise vorticity.
grain void concentration increases. Hence, the effective Reynolds
number is much lower than the nominal one, based on the
asymptotic velocity and on the average equivalent viscosity. The
particles are at rest because a small pressure guarantees contact
with the body and avoids detachment.

4.2. Vorticity

The flow field is essentially 2-D, so only the componentωz of the
vorticity can be measured. The average non-dimensional vorticity
ω∗

z = ωzb/U0 is shown in Fig. 7. Two macro vortices are evident
near the upper and lower separation points, with maximum
intensity equal to ≈±4, and geometry almost independent on the
Reynolds number. A similar maximum value was also typical of
circular cylinder [20].

The shape of the vortices is similar for all tests, and the vor-
ticity contour line of ω∗

z = 1 is confined within [−b, 2b] stream-
wise. The pattern is symmetric about the centreline and extends
also upstream of the base of the triangular cylinder. A compari-
son between the average vorticity distribution measured here and
that computed for Newtonian fluid ([6,37]) is shown in Fig. 8. The
main difference is the presence of strong vorticity upstream and
the short extension of the vortices downstream in the measure-
ment. The upstream vorticity is due to the sediment at rest at con-
tact with the base of the obstacle, which tend to modify the shape
of the triangle by adding a semi-circle at the base of the triangle
(see Fig. 5). It does not happen for a Newtonian fluid, which shows
intense vorticity at the apex of the obstacle but with limited ex-
tension near the base of the obstacle. The shorter distance down-
stream, where the vorticity generated near the body remains, can
Fig. 8. Average non dimensional vorticity ω∗
z = ωzb/U0 . Comparison between

numerical results for a Newtonian fluid (upper panel, from [6] and [37] and present
experiments (lower panel).

be attributed to the much higher dissipation in the grain-water
mixture than a Newtonian fluid, which cannot be properly quanti-
fied by considering only an equivalent viscosity of the mixture.
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Fig. 9. High-pass filtered flow field for a single frame with three detected vortices
having radius 2.5 mm. Test with triangular cylinder at Re = 20. The flow is from
the right.

Fig. 10. Vortices detected for all frames. The size is proportional to the radius,
arbitrary scale. Black: CW vortices; Grey (red): CCW vortices.

In the present conditions, no vonKarman vortices develop, even
though the frequency of acquisition can be a limiting factor in their
detection.

4.3. The vortices

Fig. 9 shows a snapshot of the flow field after high-pass filtering
with three vortices automatically detected. The analysis has been
performed by setting a maximum radius of eddies to be 4 mm
(≈10d).

Fig. 10 shows the spatial distribution of vortices, with the size
of the circles representing vorticity proportional to their radius.
A total of ≈1800 eddies were identified for the circular cylinder,
and ≈2000 for the triangular cylinder, using 100 frames for each
test (≈27 s). On average, there are 18–20 eddies per frame.
Fig. 11 reports the location of vortices by circles, whose size is
proportional to the energy (arbitrary scale). While some vortices
are present far from the obstacle, those significantly energetic are
by the obstacles in the boundary layer that marks the interface
between sediment at rest and sediment at move. The circular
Fig. 11. Vortices detected for all frames. The size is proportional to the energy,
arbitrary scale. Black: CW vortices; Grey (red): CCW vortices.

Fig. 12. Average distribution of the regions satisfying [32] criterion. The darkest
regions refer to the maximum frequency.

cylinder leads to the generation of more energetic eddies with
a gap in the separation area, where vorticity has a maximum
(see [20]).

In order to reveal the effects of the λ2-criterion, Fig. 12 shows
the spatial distribution of the frequency of occurrence of λ2 < 0
for a single test; other tests show a similar pattern, and similar
patterns are also observed for a circular cylinder. In a two-
dimensional flow, it is essentially a tool to separate vorticity due to
shearing and that due to swirling, and, in the present analysis, is a
necessary but not sufficient condition for the existence of a vortex.
The most likely areas for vortices are near the vertex of the base,
where vorticity is also quite strong, whereas, for circular cylinder,
the likely areas also include the shoulders of the obstacle, where
vortices have not been detected.

Fig. 13 depicts the probability density function (pdf) for clock-
wise and counteclockwise vortices having radius equal to 2 mm
at Re = 94. Counter-clockwise eddies, carrying positive vorticity,
have a pdf similar to clockwise eddies, and only minor differences
are observed partially due to a small asymmetry in the flow field
and to the limited size of the sample used in the statistics. The dis-
tribution of the energy for varying radius is shown in Fig. 14. Simi-
lar findings are reported in [29]. The pdf of the vorticity is expected
to be log normal for all eddies as a result of the product of a large
number of independent, identically-distributed variables, and the
peak decreases with increasing radii. For energy Γ 2/U2

0b
2

→ 0, a
drop of all curves is reported. The energy should decrease with re-
duced size of the eddies, with a minimum at a radius equal to the
Kolgomorov scale, which is less than the effective resolution of the
present analysis (about 1.25 mm).

The pdfs of the vortices vs non dimensional energy are shown
in Fig. 15 at varying Reynolds numbers. The peak reduces, and
the distribution is also more uniform at lower Reynolds numbers.
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Fig. 13. Probability distribution of energy circulation for all detected vortices.
Vortex radius, r = 2 mm. Vortices detected for test at Re = 94 triangular cylinder
obstacle. Dashed line (black): CW vortices; bold line (red/grey): CCW vortices.

Fig. 14. Probability distribution of energy circulation for all detected vortices.
Vortices detected for test at Re = 94, triangular cylinder.

Fig. 15. Normalized energy as a function of the Reynolds number, triangular
cylinder.

Larger Reynolds number favors smaller eddies, which are more
dissipative. The energy contribution vs the size of eddies is shown
in Fig. 16 for a single test at Re = 94 using the triangular cylinder
Fig. 16. Non dimensional mean energy of the vortices (bold and dashed curves)
and total energy of the vortices (curves with symbols). Vortices detected for test at
Re = 94, triangular cylinder obstacle.

obstacle. Both CW and CCW give equal contribution except for
large eddies, where the CW (ω < 0) eddies are dominant because
they carry more energy per eddy (lower curves in Fig. 16) and
are also more populous. The maximum is reached at r/d ≈ 6.6
(2.5 mm), which represents the preferential size of the eddies at
that Reynolds number. The same value is obtained for tests at other
Reynolds numbers, even though a secondmaximum is also present
for r/d ≈ 9.3 (3.5 mm). For circular cylinder, the maximum is
always at r/d ≈ 9.3 (3.5 mm).

The population of the vortices is almost equally spread in the
two half planes (Fig. 17), the upper plane where essentially ω >
0 and the lower plane where ω < 0. As expected, the energy
contribution is dominated by CW eddies in the lower plane and by
the CCW eddies in the upper plane. The differences in the energy
contribution become negligible for eddies with radius equal or less
than 2 mm, and it is coherent with a model of turbulence where
smaller eddies tend to be isotropic whereas larger eddies have
a size, energy and spatial distribution depending on the macro-
scales of the flow. The presence of eddies carrying an opposite
vorticity respect to the dominant local vorticity can be explained
in several ways. For example, the intrinsic random nature of
turbulence can generate coherent structures different from the
average.

5. Conclusions

Wehave obtained grain velocitymeasurements in a 2-D stream
of a granular mixture, with water as the inter particles fluid,
around a circular and a triangular cylinder, and different velocity of
the stream. The set of experiments should be extended including
different viscosity of the interparticles fluid, different relative size
of the grains respect to the length scale of the obstacles, different
static angle of repose of the grains and possibly different roughness
of the lateral walls of the obstacles.

• The flow field is similar to that of a Newtonian fluid but stream-
lines are much as one would expect for a fluid flowing in the
opposite direction. This last behavior is typical of dry granular
stream, as reported by [3].

• Flow visualization shows a limited recirculation zone past a tri-
angular cylinder, less extended than for a Newtonian fluid and
absent for a dry granular stream. Similar resultswere also found
for the circular cylinder [20].
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Fig. 17. Nondimensionalmean energy of the vortices (bold and dashed curves) and
total energy of the vortices (curves with symbols). Upper panel: upper half; lower
panel: lower half. Vortices detected for triangular cylinder obstacle.

• For the triangular cylinder, a zone of sediment almost at rest is
present upstream, with a semi-circular shape and an extension
independent on the Reynolds number. This zone modifies the
shape of the obstacle. Instead, the zone has a triangular shape
for a dry granular stream [3] with edge inclination much larger
than the static angle of repose of the grains.

• InNeddermanet al. experiments, carried out alsowith obstacles
of different shape, there is a convincing demonstration that the
flow is controlled by factors downstream the location of inter-
est. The present tests show a similar behavior.

• The vorticity scales with the size of the obstacle and the asymp-
totic velocity. Vorticity is confined near the vertices of the base
of the triangular cylinder and, respect to vorticity induced by
a Newtonian fluid, it spreads more upstream. This is due to the
zone of sediment almost at rest at the base of the triangle,which
modify the apparent shape of the obstacle. The vorticity reaches
a maximum intensity of around 4U0/b. A similar value was ob-
tained also for the circular cylinder.

• The vortices vs their energy have a probability distribution
functionwith a peak and a fast drop. The pdf of vortices vs. their
normalized energy does not scale with the Reynolds number.
The contribution of clockwise and counter-clockwise vortices
is almost balanced.
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