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Abstract

We present a pragmatic view of self-similarity, which is indeed rooted
in refined mathematical theory and unravelling in multiple approxima-
tions, hypotheses, and working approaches, all aimed at solving differ-
ential problems by extracting the essence of the results. In developing
self-similar solutions, the main concern of the scientist is not the strict
adherence to boundary conditions and initial conditions, but rather in
discovering their ability to reveal the profound internal harmony that
governs many physical processes. The structure of the self-similar vari-
ables, almost always of the power type, indicates that some scales of the
process are correlated. This correlation is sometimes directly detectable,
other times is hidden and originates from the structure of the differential
problem itself, and this categorizes the self-similarities of the first and
second kind, respectively.

In what follows, after a short introduction of group theory, we provide
a step-by-step analysis of two physical problems of fluid mechanics that
admit self-similarity solutions of the two kinds listed above. We highlight
that we would not have presented these two cases if they had not been
experimentally validated, since the more refined and brilliant solution
of a differential problem, loses its attractiveness without experimental
validation.

1 Introduction

Dimensional Analysis, and the few (practically only one) theorems pertaining
to it, derives from the principle of general covariance in physics: all physical
laws can be expressed in such a way to be independent of the observer. In
the case of quantities, this is a consequence of the evidence that the intrin-
sic value of quantities (e.g. the height of a person, their weight, the mass
of air in a room) must be preserved in all systems of units. For example, if
a room contains a mass of air of 58 kg and a smaller room contains 34 kg,
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with a ratio of 58/34=1.7, the ratio between the air mass of the largest room
expressed in pounds (58 kg → 128 pounds) and the air mass of the smallest
room expressed in pounds (34 kg → 75.06 pounds) must still be equal to 1.7;
in fact 128/75.06 = 1.70 (not including rounding). In this sense, the principle
of dimensional homogeneity becomes a natural consequence of the covariance
principle, just as the structure of the dimensional equations, in the form of
power-functions, is dictated by this covariance principle.

The fundamental idea is that if the intrinsic value of quantities is invariant,
in the sense that it does not depend on the system of units of measurement, it
must be expressed in such a way that the ratio to the value of another quantity
of the exact same nature is the same from one system of units to another.
As a consequence, once certain quantities have been identified as fundamental
quantities (we do not discuss here the conventionality about the selection of
fundamental quantities, both in terms of their number and their nature), any
dependent quantity must be a power-function of these fundamental quantities,
and the systems of units are related through a group of scaling transformations
(see later about groups).

Reasoning in the other way round, if we can prove that the mathematical
description of a physical process (for example, a differential problem) is suscepti-
ble to invariance within a group of transformations, it can always be expressed
in such a way to involve variables that are invariant within the same group.
The advantage follows because the number of such variables is smaller than the
number of starting variables, and equal to the initial number of variable minus
the number of parameters of the transformations. We have thus introduced the
concept of transformation, which underlies the methods adopted for the detailed
analysis of the properties of many differential problems, including self-similarity
of the first and second kind.

In this regard, let us consider what happens for a scaling transformation
applied to an ordinary differential equation (ODE). Suppose that our problem
is described by the following first-order ODE:

dy

dx
= F (x, y), (1)

and assume that it is invariant within the following scaling transformations:{
x∗ = αx,

y∗ = βy.
(2)

It can be shown (Bluman & Kumei, 1989) that if β is independent of α, then
eq.(1) is with separable variables of the type

dy

dx
= a

y

x
, (3)

where a is a constant. In other words, the separation of variables necessarily
requires the scaling transformations to be a two-parameter independent α and
β.
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On the contrary, if β = β(α) it is immediate to verify that eq.(1) reduces to

dy

dx
= xk−1G(y/xk), (4)

where k is a constant, which is invariant under the one-parameter transformation{
x∗ = αx,

y∗ = αky.
(5)

Ultimately, a scaling that guarantees invariance of an ODE introduces vari-
ables of the form y/xk.

2 The Lie groups

Indeed the previous reasoning belong to the group theory, with particular em-
phasis on the Lie groups theory. In what follows, we will use an extremely
simplified version of the theory, which will be useful for understanding the fun-
damentals of the technique and for deriving results of practical application.

Let x = (x1, x2, . . . , xn) be a vector in a sub-domain of Rn, and let

x∗ = X(x, ε) (6)

be a set of one-parameter transformations, where ε is the parameter. The set of
transformations forms a group iff: being x∗ = X(x, ε1) and x∗∗ = X(x, ε2), then
x∗∗ = X(x, φ(ε1, ε2)), where φ(. . .) is the composition rule of the parameter; in
addition, x∗ = x if X(x, e) = x, being e the neutral element. For example, if we
consider the transformation (5), the function φ(ε1, ε2) = ε1ε2 and e = 1. The
transformation (6) can be expanded about ε = 0 obtaining

x∗ = x +

(
∂X

∂ε

∣∣∣∣
ε=0

)
ε+O(ε2), (7)

or

x∗ ≈ x + ξ(x)ε, with ξ(x) =
∂X

∂ε

∣∣∣∣
ε=0

, (8)

which is named the infinitesimal transformation of the Lie group. Essentially,
it is the lowest approximation of the general transformation for small values of
the parameter ε.

We also define the infinitesimal generator of the one-parameter Lie group
the operator

χ(. . .) =
∑

ξi
∂(. . .)

∂xi
. (9)

The invariance in a Lie group of a given differential function requires F (x) =
F (x∗) or F (x) = F (X(x, ε)), which can approximated as

F (x∗i ) = F (xi) + ξi
∂F

∂xi
ε+ . . . . (10)
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So, the invariance reduces to

ξi
∂F

∂xi
= 0, (11)

which can be interpreted as the invariance of the function (dF = 0) on the
characteristic curve represented by

dx1
ξ1

=
dx2
ξ2

= . . . =
dxn
ξn

. (12)

Examples of one-parameter Lie groups of transformations are Translations
in the plane, {

x∗ = x+ ε,

y∗ = y, ε ∈ R,
(13)

with identity element e = 0 and composition rule of the parameter φ(ε1, ε2) =
ε1 + ε2; Scalings in the plane,{

x∗ = αx,

y∗ = α2y, 0 < α <∞,
(14)

with identity element e = 1 and φ(ε1, ε2) = ε1ε2. Scalings in the plane can also
be expressed as {

x∗ = (1 + ε)x,

y∗ = (1 + ε)2y, −1 < ε <∞,
(15)

with identity element e = 0 and φ(ε1, ε2) = ε1 + ε2 + ε1ε2. A third relevant
group is Rotations in the plane, expressed as{

x∗ = x cos ε− y sin ε,

y∗ = x sin ε+ y cos ε.
(16)

A number of groups of transformations have been encoded, which are useful
for applying a variety of calculation techniques.

The next steps in this analysis become progressively more difficult and of
limited interest to non-mathematicians. What emerges, however, is Lie’s idea
who extended to differential equations the methods that Galois had developed
for algebraic equations. In essence, Lie devised a method to determine whether a
differential problem is invariant in some group; if so, it follows that it is possible
to reduce the ODEs by one order, possibly in cascade up to first order and then
to the solution by quadrature.

Of particular interest is the case where a partial derivative equation (PDE)
is involved that, with boundary and initial conditions (where one independent
variable is time), is invariant within a group of transformations: for a one-
parameter transformation, it is possible to reduce the number of variables by
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Figure 1: Schematic of the two-dimensional gravity current.

one unit, often reducing the PDE to an ODE. This is not the solution to the
problem, but a big step forward since the integration of an ODE is much simpler
than the integration of a PDE; in lucky cases, the ODE also admits an analytical
solution.

Let us leave aside all the theory and techniques that allow such a transfor-
mation to be identified: if the transformation is identified (in most cases it is
a scaling, which brings to power-type functions, although non-power-type self-
similar solutions are possible, see § 6 in Barenblatt, 1996), then let us delve
into how to proceed in order to solve the problem.

3 Self-similarity of the first kind

We now describe a physical process that, under appropriate assumptions and
approximations, is described by a differential problem admitting a self-similar
solution of the first kind.

We consider a two-dimensional gravity current (GC) of a homogeneous non-
Newtonian power-law fluid flowing in a porous medium already saturated by a
lighter fluid, with an impermeable horizontal bottom (Di Federico et al., 2012),
see figure 1. Under several hypotheses, the continuity equation becomes a non-
linear PDE governing the local depth of the current, which can be written in
dimensionless form as

∂H

∂T
− ∂

∂X

[
H

∣∣∣∣∂H∂X
∣∣∣∣1/n−1 ∂H∂X

]
= 0, (17)

where H is the depth of the current, X is the space, T is the time and n is
the fluid behaviour index of the power-law fluid (n < 1 is shear-thinning, n > 1
is shear-thickening, n = 1 is Newtonian). The volume of the denser fluid is
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expressed as a power-function of the time:∫ XN

0

HdX = T δ, (18)

where XN is the front position and δ ≥ 0 is the exponent of the inflow rate,
with δ = 0 representing a constant volume and δ = 1 a constant inflow rate.
The boundary condition is H(XN ) = 0.

We already know (and this is a pragmatic approach) that self-similarity in
most cases requires a group of scalings, hence we look for a group of transfor-
mations of the following type: 

X∗ = αX,

T ∗ = βT,

H∗ = γH.

(19)

Furthermore, we also know that the parameters α, β, γ are not functions of
the variables, either independent or dependent. Finally, we expect a functional
dependence between the three parameters that could lead to an infinity of solu-
tions, since we can write two equations in three unknowns; the two equations are
the mass conservation in the differential (17) and the integral (18) formulations,
respectively.

All this information enables us to skip the analysis that allows (i) to as-
certain that a self-similar solution is possible, and (ii) to identify the group of
transformations.

At this point, in order to check the existence of the group, we substitute the
expressions in (19) into the two equations (17-18) and then we impose invariance,
i.e.:

∂H∗

∂T ∗
− ∂

∂X∗

[
H∗
∣∣∣∣∂H∗∂X∗

∣∣∣∣1/n−1 ∂H∗∂X∗

]
≡

∂H

∂T
− ∂

∂X

[
H

∣∣∣∣∂H∂X
∣∣∣∣1/n−1 ∂H∂X

]
= 0→

β

γ

∂H

∂T
− α1/n+1

γ1/n+1

∂

∂X

[
H

∣∣∣∣∂H∂X
∣∣∣∣1/n−1 ∂H∂X

]
=

∂H

∂T
− ∂

∂X

[
H

∣∣∣∣∂H∂X
∣∣∣∣1/n−1 ∂H∂X

]
, (20)

and∫ X∗
N

0

H∗dX∗ − (T ∗)δ ≡
∫ XN

0

HdX − T δ = 0→

1

αγ

∫ XN

0

HdX − 1

βδ
T δ =

∫ XN

0

HdX − T δ, (21)
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equivalent to 
β

γ
=
α1/n+1

γ1/n+1
,

αγ = βδ.

(22)

The solution of the system (22) in terms of α is
β = αF1 ,

γ = αF2 ,

F1 =
n+ 2

n+ δ
, F2 =

(n+ 1)δ − n
n+ δ

,

(23)

hence we are dealing with a one-parameter scaling group of transformations
leaving invariant the differential problem. In other terms, we have identified the
three scaling ratios of the variables that allow complete similarity between the
space (X,T,H) and the space (X∗, T ∗, H∗).

So far, no real advantage. However, we can reason in the logic of Buck-
ingham theorem: we select a variable as the independent one, e.g. time; the
transformations allow the computation of the dimension of both X and H with
respect to T . Preservation of the intrinsic value of variables requires that they
are a power-functions of the fundamental variable (see Longo, 2022, §1.2.4), i.e.
X = T r and H = T s, where the exponents r and s are calculated so that X
and H are invariant in scaling (19), i.e.:

X − T r ≡ X∗ − (T ∗)r = 0→
X − T r ≡ αX − αrF1T r = 0,

H − T s ≡ H∗ − (T ∗)s = 0→
H − T s ≡ αF2H − αsF1T s = 0,

(24)

resulting in 
r =

1

F1
≡ n+ δ

n+ 2
,

s =
F2

F1
≡ (n+ 1)δ − n

n+ 2
.

(25)

The differential problem, described by the typical equation

f (X,T,H) = 0, (26)

applying Buckingham theorem can now be expressed as

f1

(
X

T 1/F1
,

H

TF2/F1

)
= 0, (27)
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where the arguments are both invariant in the group of scaling transformations
(19), and where the time T cannot be present autonomously.

At this point we have no further data or information to identify the structure
of the function f1; for progress, we assume the following structure

H

TF2/F1
= aφ

(
X

T 1/F1

)
, (28)

or

H = aTF2/F1φ(η), η =
X

T 1/F1
, (29)

where a is a coefficient introduced to achieve a relevant simplification and gen-
eralisation of the differential problem, as we shall see later.

By substituting (29) into the original differential problem (17–18), including
the boundary condition, yields

a1/n
(
φ |φ′|1/n−1 φ′

)′
− 1

F1
ηφ′ +

F2

F1
φ = 0, φ(ηN ) = 0, (30)

and

a

∫ ηN

0

φ dη = 1, (31)

where ηN is the value of η at the front of the current.
It is now convenient to normalize the variable η as χ = η/ηN , obtaining

a1/n

η
1/n+1
N

(
φ |φ′|1/n−1 φ′

)′
− 1

F1
χφ′ +

F2

F1
φ = 0, φ(1) = 0, (32)

and

aηN

∫ 1

0

φ dχ = 1. (33)

By imposing that the coefficient of the first term in (32), a1/n/η1/n+1, equals
unity, results in a = ηn+1

N , with:(
φ |φ′|1/n−1 φ′

)′
− 1

F1
χφ′ +

F2

F1
φ = 0, φ(1) = 0, (34)

By substituting into eq.(33) results

ηN =

(∫ 1

0

φdχ

)−1/(n+2)

. (35)

With these substitutions, we have obtained a differential problem where
the only parameters are n and δ, with the integral part decoupled from the
differential part: the integral can be calculated once and for all after solving
the differential problem. The differential problem in the variable φ(χ) can be
integrated according to the scheme detailed in Di Federico et al. (2012).
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Note that (i) self-similarity is strongly conditioned by the structure of the
differential problem; in particular, if the integral condition of mass conserva-
tion (18) does not include a change in the volume of time as a power-function,
self-similarity is lost in the most general case and it is necessary to numerically
integrate the differential problem; (ii) some working techniques, such as the nor-
malisation of the variable and the introduction of a coefficient in the expression
of the self-similar dependent variable, simplify the achievement of the result to
a very great extent.

In other cases, it is possible to separate the early time solution from the late
time solution, neglecting terms that are initially small in the former case, or
become small in the latter case, obtaining two asymptotic solutions, possibly
with a matching expansion in the midway.

The experimental verification of this model was performed for the more
general case where there is a porosity/permeability gradient in the horizontal
direction or in the vertical direction, in the Hele-Shaw analogy, see Ciriello et al.
(2016).

In summary, having identified a one-parameter scaling transformation has
enabled the reduction of the number of variables from three to two. It follows
that a partial differential problem with one dependent and two independents
variables, turns into a differential problem with an ODE, which is always easier
to solve than a PDE; in lucky cases the ODE admits analytical solutions.

3.1 Changing system of units of measurements requires a
scaling group of transformations

Considering that the transformation from a system of units of measurement
to another system of units of measurement of the same class (characterised
by the same fundamental quantities, e.g. mass, length and time) is a scaling
with a number of parameters equal to the number of fundamental quantities,
it is evident that Buckingham theorem is simply the natural consequence of a
principle of covariance that, in the case of physical processes, does not need the
demonstration of invariance: it is perfectly reasonable that the same physical
process is intrinsically invariant when the system of units used to measure it
varies (in other words, the physical process does not notice the observer or the
way it is observed and measured), and it follows that the physical process can
be expressed with variables that are independent of the selected system of units,
i.e. in terms of dimensionless groups, namely.

From this point of view, given two systems of units belonging to the same
class, i.e. sharing the same fundamental quantities (e.g. mass M , length L and
time T ), the preservation of the intrinsic value of the quantities requires that
the two systems are related by the following scaling group of transformations,
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with as many parameters as there are fundamental quantities:
M∗ = rMM,

L∗ = rLL,

T ∗ = rTT,

(36)

where the parameters are rM , rL, rT . In this respect, a dependent variable like,
e.g., the volumetric flow rate Q, has a scaling function of rM , rL and rT (or a
subset), and indeed invariance requires that Q∗ = r3Lr

−1
T Q or rQr

−3
L rT = 1.

The reduction in the number of variables is equal to the number of fundamen-
tal variables, i.e. of the number of parameters of the group of transformations.

4 Who is right and who is wrong?

The heading of this paragraph refers to the truthfulness or otherwise of the
self-similar solution. In essence, the self-similar solution obtained is not the
rigorous solution of the differential problem, but it can be an excellent approx-
imation that works well neither too early nor too late (early or late refer to
non-stationary problems in which the time variable appears). In this sense, the
answer to the question is a paraphrase, or rather, an oxymoron, of a friend of
mine: we could answer “You are right, but I am not wrong”.

In the initial phase of the process, boundary conditions can be decisive and
such that the model deviates from physical reality (e.g. the curvature of the
trajectories may be so high that the assumption of hydrostatic pressure dis-
tribution, which underlies the shallow water equations, is incorrect), and the
analytical scheme is conditioned to such an extent that self-similarity has not
yet been established. In the terminal phase the self-similar solution fails once
again either because other assumptions of the analytical model fail, or because
of perturbations that may finally have the upper hand.

At this point the question arises: can it be the case that the initial and
boundary conditions are always non-negligible with respect to the internal dy-
namics of the process? Yes, it can happen, and in such a case the self-similar
solution, although predicted by theory, is not an acceptable approximation. A
second question is: can it happen that perturbations immediately “pollute” the
flow field? Again, the answer is yes, since the system may be so unstable that it
amplifies the infinitesimal perturbations, possibly with successive bifurcations.
It follows from these arguments that there is an absolute need for experimental
validation to confirm or deny the adequacy of a self-similar solution, possibly
indicating the limits of validity of the approximation (see Ball & Huppert, 2019;
Ball et al., 2017).

As an example, consider the case of the dipole, a GC propagation process
where the first-order momentum of the fluid volume is conserved (Longo et al.,
2015). Figure 2 shows the evolution of a dipole for a non-Newtonian power-
law fluid, experimentally reproduced in a Hele-Shaw cell. The fluid is initially
stored in a finite portion of the Hele-Shaw cell (the physical approximation of

10



Figure 2: Time evolution of a dipole for power-law GCs. a) Early time, b) inter-
mediate asymptotic, and c) late time. Curves and bullets are theory. (modified
from Longo et al., 2015)

a Dirac delta), bounded by two vertical sluice gates; at a later stage, after the
sluice gates are lifted, the fluid recedes to the left falling out of the domain,
and propagates as a GC to the right. While at the beginning the deviation
between theory and experiment is visible, later on an adequate agreement is
reached, which, in a third phase, is lost again. At the beginning, the deviation
is determined by the fact that (i) a finite volume of fluid cannot be completely
representative of a Dirac delta, and (ii) the manoeuvre of opening the sluice
gates, one on the right and the other on the left, occurs in a finite time and
with asymmetries. In the terminal phase, the deviation results from the fact
that the surface tension is no longer negligible and, furthermore, the dynamics
of the flow is controlled by both the shear in the horizontal plane and the shear
in the vertical plane (the simplified model only includes the first of the two).

Strictly speaking, we should compare the self-similar solution with the nu-
merical solution, so as not to involve the conceptual model adopted to schema-
tise the physical process: the conceptual model, in fact, could be fallacious and
experiments could mercilessly highlight these limitations. This does not mean
that the self-similar solution that cannot reproduce the experiments would be
incorrect. Thus the direct comparison of the self-similar solution with experi-
ments, if satisfactory, gives good reasons for the acceptability of the numerous
approximations used both in the conceptual model and in the set-up of self-
similarity.

5 Self-similarity of the second kind

Until now, we have extended to the study of differential problems some con-
cepts that, more or less unconsciously, we already applied in dimensional anal-
ysis, first and foremost Buckingham theorem. Some distinction of method is
in order: when we deal with dimensions of physical quantities, dimensionless
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groups are derived by combining the variables involved so that they have zero
dimension, precisely; when instead we have calculated self-similar variables,
power-functions of variables already rendered dimensionless by choice, we have
imposed invariance with respect to scalings which leave the differential problem
unchanged.

In both cases the dimensional calculus and the simple application of the
covariance principle are sufficient to obtain invariant groups, in the first case
with respect to different unit systems, in the second case with respect to the Lie
group. We remind that the selection of dimensionless groups is not unique, in the
sense that the combinations of variables that determine a dimensionless group
are infinite, and Buckingham theorem only establishes the maximum number
of dimensionless groups sufficient to describe the physical process, but does not
in any way indicate what these groups are; similarly, the number of scaling
parameters allows the number of variables sufficient to describe the differential
problem to be reduced by the same value, but gives no indication on the selection
of self-similar variables.

There are physical problems that, when translated in terms of differential
problems, have a self-similar solution that is not detectable on the basis of
the criteria and methods we used in § 3. In many cases, the discontinuity of a
parameter, or the transition from an idealised problem to a problem that is more
down-to-earth in physical reality, is enough to lead to the occurrence of what
is termed anomalous scaling. The literature is quite extensive on this subject,
with minute details on the occurrence of such problems (see Barenblatt, 1996,
2003).

In the anomalous scaling there appears at least one variable, a power-
function of the starting variables, in which an exponent cannot be calculated a
priori on the basis of the transformation that leaves the differential problem in-
variant. In some cases, the conservation of some property in the physical process
intervenes to determine the value of that exponent, which indicates that a prob-
lem with an apparent anomalous scaling can be traced back to a problem with
a self-similar solution of the first kind; in other cases, however, the exponent is
derived by solving the problem, and is therefore referred to as eigenvalue.

Such an eigenvalue can be single, or belongs to a discrete group of finite or
infinite numerosity, or can be a continuous function and thus be representable
as a spectrum. If there are multiple eigenvalues, the problem arises as to which
eigenvalue is the correct one, and this is where experimental practice comes in;
based on the above comments, experiments are required to validate even the
case of a single eigenvalue.

5.1 Converging gravity current modelled as a second kind
self-similar problem
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Figure 3: Radial converging flow. The model refers to rf � r0 and rf � h0.
(modified from Longo et al., 2021)

A classic problem representative of a second-kind self similar solution prob-
lem and that has received particular attention is the study of converging GCs,
in cylindrical symmetry (also with experimental verification) and in spherical
symmetry (only theoretical analysis) (Gratton & Minotti, 1990; Zheng et al.,
2014; Longo et al., 2021). In cylindrical symmetry, we have a fluid that initially
occupies only a portion of the domain in the shape of a circular crown, with
a dry area towards the axis; then a circular cylindrical sluice gate is lifted and
the fluid, under the action of gravity, advances towards the axis of symmetry
(a dam-break), with a radial flow field with converging trajectories, see the
schematic in figure 3.

First of all, we wonder what is the origin of the self-similarity of the second
type. If we analyse what happens when the front has a small radius with
respect to any other scale length that characterises the flow field (e.g., the initial
radius and the depth of the fluid in the tank before the dam-break), then the
parameters that could be influential in the evolution of the current lose their
meaning. Hence, dimensional analysis as extended with groups theory cannot
help in finding the self-similar variables.

Then, we ask what method should be adopted to identify the structure of the
self-similar variables, if any, as well as to identify the additional parameter(s)
characterising these variables.

The methods adopted are (i) numerical integration to find an asymptotic
trend in the solution, which must appear linear on a bi-logarithmic scale if the
dependence of the two represented variables is a power-function; (ii) the direct
approach using, for example, a phase-plane analysis. In this second methodol-
ogy, the procedure is a trial and error and the unknown exponent of the self-
similar variable is called the eigenvalue since it originates from the structure of
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the differential problem describing the process.
The details of the analysis are reported in Longo et al. (2021) and are here

only briefly recalled.

In a radial geometry flow field, neglecting the curvature of the trajectories
we assume the shear stress acting on the plane of normal z in the radial direction
r, τzr, to be dominant, and calculate a vertically averaged velocity of the non-
Newtonian power-law fluid equal to

u(r, t) = −sgn

(
∂h

∂r

)
h(n+1)/n n

2n+ 1

(
∆ρ g

µ0

)1/n ∣∣∣∣∂h∂r
∣∣∣∣1/n , (37)

where n is the fluid behaviour index, µ0 is the consistency index, ∆ρ is the
density difference between the fluid of the current and the ambient fluid, g is
acceleration of gravity.

Mass conservation reads

∂h

∂t
+

1

r

∂(ruh)

∂r
= 0, (38)

with the boundary condition h(rf ) = 0, where rf is the front of the current;
integral mass conservation reads

2π

∫ r0

rf

rhdr = Qtα, (39)

where α ≥ 0 is an exponent with α = 0 corresponding to dam-break and α = 1
corresponding to constant inflow rate; other values of α generate waxing and
waning inflow rate. Q > 0 with [Q] = L3T−α is the coefficient of the inflow
rate.

We adopt the initial radius r0 as horizontal length scale and balancing the
terms in eqs.(37–39) results in a vertical length scale

h∗ =

(
2n+ 1

n

)αn/(2α+αn+n)(
Q

2π

)n/(2α+αn+n)
× r[α+(α−2)n]/(2α+αn+n)

0

(
µ0

∆ρ g

)α/(2α+αn+n)
, (40)

a velocity scale

u∗ =
n

2n+ 1
h∗(n+2)/n

(
∆ρ g

µ0

)1/n

r
−1/n
0 , (41)

and a time scale

t∗ =
2n+ 1

n
h∗−(n+2)/nr

(n+1)/n
0

(
∆ρ g

µ0

)−1/n
. (42)
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In terms of the dimensionless variables R = r/r0, H = h/h∗, T = t/t∗, and
after introducing (37) in (38), the differential problem becomes:

∂H

∂T
− 1

R

∂

∂R

[
RH(2n+1)/n

∣∣∣∣∂H∂R
∣∣∣∣1/n−1 ∂H∂R

]
= 0, H(Rf ) = 0, (43)

∫ 1

Rf

RH dR = Tα. (44)

Following the same approach adopted in § 3, the one-parameter transforma-
tions group leaving invariant the differential problem (43–44), is

R∗ = βR,

T ∗ = βF1T,

H∗ = βF2H, where

F1 =
3n+ 5

2α+ αn+ n
, F2 =

α+ (α− 2)n

2α+ αn+ n
,

(45)

and the self-similar variables, invariant within the same transformations group,
are

H = aTF2/F1Ψ(ξ), ξ = RT−1/F1 , (46)

where a is a coefficient to be computed in order to simplify the results. Substi-
tuting these variables in (43–44), results in:(

ξΨ(2n+1)/n |Ψ′|1/n−1 Ψ′
)′

+
ξ2

F1
Ψ′ − F2

F1
ξΨ = 0, Ψ(ξf ) = 0, (47)

∫ ξ0

ξf

ξΨ dξ = 1, (48)

where the prime indicates the derivative with respect to the argument.
The next step consists in normalising the variable ξ, but the difficulty arises

immediately. In fact, there are two variables to be normalised in the integral
condition (48) in order to allow their calculation, i.e. ξ0 and ξf , but we only have
one equation. Even the introduction of a stretching like χ = (ξ − ξ0)/(ξf − ξ0),
mapping [ξ0, ξf ] → [0, 1] is not useful, since it introduces additional terms in
(47–48) which cannot be matched with the other terms.

In principle, an asymptotic solution is possible when one of the two vari-
ables, e.g. ξ0, is “forgotten” and is no longer relevant to the propagation of the
current: the current evolves on the basis of local scaling quantities implicit in
the differential problem, i.e. controlled by eigenvalues. In other words, we can
also state that the presence of two length scales, i.e. r0 and h∗, prevents self-
similarity at least of the first kind, and indeed the presence of multiple scales
is one of the signal of a missing self-similarity (see Barenblatt, 1996), although
there are cases where the multiple scales collapse to the same dependence struc-
ture and allows self-similar solutions; see Di Federico et al. (2017) where, for a
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linearly waxing inflow rate a GC of Herschel-Bulkley fluid in a fracture and in
a porous medium, admits self-similarity. See also Longo & Di Federico (2014).

We are therefore dealing with a differential problem that could admit a self-
similar solution, but for which the criteria and methodologies used in § 3 are
not applicable.

We now try a different approach.
The dependent variables u and h are expressed with dimensionless counter-

part U and H as below:

u(r, t) =
r

tr
U(r, tr), (49a)

h(r, t) =

(
2n+ 1

n

)n/(n+2)(
µ0

∆ρ g

)1/(n+2)
r(n+1)/(n+2)

tr|tr|−2/(n+2)
H(r, tr), (49b)

where tr = t − tc and with tc the touch-down time required for the current to
reach the central axis r = 0. The absolute value in (49b) is introduced to allow
tr to be negative during current propagation toward the origin (filling or pre-
closure phase), and positive after the front of the current has reached the origin
(levelling or post-closure phase); the second phase of evolution also admits a
self-similar solution. Note that the dimensionless variables adopt “local” scales,
i.e. (i) the contact time, whilst the current release time (a “far” variable) scaled
as r0/u

∗ is no longer relevant; (ii) the distance r from the origin, which is not
affected by r0, if r0 is large enough. The new velocity scale r/tr looks anomalous
compared to traditional scales, which are generally a function of parameters and
not of the variables involved in the physical process. In fact, this very definition
will lead to an eigensolution.

Substituting eqs.(49a–49b) into eqs.(37–38), yields:

(n+ 2)H |H|n r ∂H
∂r

+ (n+ 1)H |H|n+1
+ (n+ 2)U |U |n−1 = 0, (50a)

− (n+ 2)r
∂HU

∂r
+ (n+ 2)tr

∂H

∂tr
− (3n+ 5)UH − nH = 0. (50b)

We aim to find a group of transformations that leave invariant eqs.(50a–50b):
U∗ = αU,

H∗ = βH,

r∗ = γr,

t∗r = ωtr;

(51)

substituting into eqs.(50a–50b), yields

βn+2 = αn, αβ = β, (52)

which admits only the trivial solution α = β = 1 and leaves undetermined the
other two coefficients γ and ω, so there is no useful transformation.
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However, in the same frame of mind of looking for process scales as local
scales contained in the differential problem, we look for the parameters of the
group of transformations as 

U∗ = U,

H∗ = H,

r∗ = γr,

t∗r = γ1/δtr,

(53)

where δ is an unknown exponent. Three possible variables invariant within this
group are

H, U,
r

tδr
, (54)

hence the differential problem can be formally expressed as

f (H,U, x, tr) = 0→ g

(
H,U,

r

tδr

)
= 0. (55)

Eqs.(50a–50b) are rearranged to obtain

dU

dH
=
H|H|n+1[2(n+ 2)U − (n+ 1)δ + n]− (U + δ)(n+ 2)U |U |n−1

H[(n+ 1)H|H|n+1 + (n+ 2)U |U |n−1]
, (56a)

d ln ξ

dH
= − n+ 2

(n+ 2)H−1|H|−nU |U |n−1 + (n+ 1)H
, (56b)

where ξ = rt−1r |tr|1−δ is the self-similar independent variable which has been
embedded in its logarithm, with d ξ/ξ ≡ d(ln ξ). Note that the variable ξ is
dimensional, with [ξ] = LT−δ; however, if it is involved in the analysis by its
logarithm, the new variable ln ξ is dimensionless, since [ln ξ] ≡ [d ξ/ξ] = 0.
These two equations are a set of autonomous planar ODEs, with boundary
conditions represented by points in the phase space. We define as singular
points the simultaneous zeros of numerator and denominator of eq.(56a), with
a further singular point obtained by setting the denominator of eq.(56a) to
infinity. Hence, there are four singular points, namely

O : (H,U) ≡ (0, 0),

A : (H,U) ≡ (0,−δ),

B : (H,U) ≡

([
n+ 2

n+ 1

]1/(n+2) [
n

5 + 3n

]n/(n+2)

,− n

5 + 3n

)
,

C : (H,U) ≡
(
−∞, (n+ 1)δ − n

2(n+ 2)

)
.

(57)

A possible solution to the differential problem is represented by a curve, in
phase space, joining the two critical points O and A in the filling phase, joining O
and C during levelling (see Sachdev, 2019; Zheng et al., 2021). The integration
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of the differential problem is performed, for example, by setting a value of δ of
first attempt and starting the integration from either A or O. In general, the
two branches do not meet (see figure 4a) and a different value of δ must be
selected, proceeding until the contact between the two curves is obtained (see
figure 4b). The value of δ that results in the contact between the two curves is
the critical eigenvalue, δc.

Figure 4a shows the phase portraits for δ 6= δc and figure 4b shows the phase
portraits for δ = δc, also including the behaviour in the levelling phase, joining
O with the asymptote C.

At this point, it is straightforward to calculate the front position:

rf
r0

= k

(
tc − t
tc

)δc
, (58)

where k is a coefficient to be evaluated through numerical integration or exper-
iments.

As highlighted from the very beginning of the present article, the soundness
of the analysis and the correctness of the results require experimental validation.
Figure 5 shows the front position in time for experiments with a Newtonian fluid.
Note that the adaptation of the theory to the experiments takes place after a
certain time interval from the release of the current, as embedded in the self-
similarity model. The late time behaviour of the front position deviates again
from the model, and in this sense the concept of intermediate asymptotic holds
also for the second kind self-similarity: “not too early, not too late”.

Similar data are also available for the levelling phase (not shown), when
the depth of the current in the origin varies in time following a power-function
obtained as an expansion of eq.(56b) about C.

6 Conclusion

The adoption of problem-solving techniques searching for self-similar solutions
has advanced enormously from its origins, in the latter part of 19th century,
to the present day. In fact, a great deal of agility of thought is required to
commensurate physical rigour and mathematical approximation, as well as to
make the problem solvable analytically or numerically.

The self-similar solutions of the first kind appear to be more readily un-
derstood, since they are framed within dimensional analysis and dimensionless
groups referred to by Buckingham theorem. Self-similar solutions of the second
kind appear more intriguing, with a group of transformations itself unknown
and obtained from the solution of the differential problem.

The perspective designed by Lie, and applied by numerous scientists in the
most diverse fields of physics, allows for both the advancement towards the
solution of new problems and the reinterpretation of classical problems. In
this regard, we consider that a sea gravity wave of infinitesimal amplitude is
described by a periodic function of argument x − ct, where x and t are space
and time, respectively, and c is the phase celerity, which is computed from the
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Figure 4: Converging radial GC. a) Phase portrait of (56a) for n = 1 (New-
tonian fluid) with a first attempt value of δ, and b) with δ = δc = 0.7620351.
The continuous curve refers to the pre-closure phase, the dashed curve refers
to the post-closure (levelling) phase, the thin red horizontal line indicates the
asymptote in the levelling phase.
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Figure 5: Front position of GCs in radial converging flow, Newtonian fluids.
Symbols refer to experiments, the straight line corresponds to the theoretical
curve for n = 1 with eigenvalue δc = 0.762. (modified from Longo et al., 2021)

dispersion equation. In a self-similarity frame, the sea gravity wave is described
by a function of the self-similar variable ξ/τ c where x = ln ξ and t = ln τ , and
where the celerity is the exponent.

In all these analyses, experimental validation is also of primary importance,
without which nothing can be said about the feasibility of the physical process
following the results: we are not fooled by mathematical stability or by the
reasonableness of the results, we believe in experimental evidence.
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