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a b s t r a c t

This paper is about the free surface instabilities of granular flows, usually called roll waves. A shallow
layer of shear-thickening fluid (τ = a(∂u/∂y)n with n = 2) is considered to study finite-amplitude
permanent roll waves down a slope, simplified by Karman’s momentum integral approach. The existence
of conditions of a periodic discontinuous solution is derived, as smooth profiles with depth increasing
monotonically between periodic shocks. Energy dissipation in the body of the stream and in the
discontinuity is analysed and discussed. Two conditions are derived. The first is related to the physically
acceptable shape of the smooth profiles, and the second is related to positive energy loss across the shock.
These conditions can be converted into a limiting discharge, viewed in the fixed frame, and in a limiting
flow thickness (or limiting Froude number), for the permanent periodic roll wave to exist without further
conditions. A minimum-length roll wave (MLRW) is defined as the periodic permanent roll waves with
zero energy dissipation in the shock. The MLRW also requires a limiting value of the Froude number to
exist.

© 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

Free surface instabilities of flows down inclined channels
have been widely observed in Newtonian and non-Newtonian
fluids. Natural gravity flows as debris flows are recorded in many
areas and are a constant reminder of the need for prediction
and control. In most cases, these flows manifest a succession of
waves which, given enough space, develop into long waves. This
behaviour is common to water and many non-Newtonian fluids.
The observations of roll waves in the torrents in the late 19th
century were followed by the description reported in Cornish [1].
Several authors in many areas have reported observations of roll
waves in mud flows. The widespread formation of free surface
instabilities, independent of the rheological properties of the fluid,
is due to the effects of inertia: if the flow field could adjust its
characteristics instantaneously, it would respond to a variation of
the current depth reducing the local mean velocity, and the wave
would simply be a kinematic wave. In real situations, the response
is delayed, and an increased current depth enhances a positive
mass flux, leading to the growth of the perturbation [2]. In addition,
the presumed structure of the wall boundary layer favours the
growth of the perturbations: the adverse gradient pressure acts
to destabilize the boundary layer, reducing the wall friction and
accelerating the wave crest [3]. Dressler [4] also emphasised the
need for a friction reduction in the flow direction, from smaller to
larger water depths, in order to obtain roll waves. Although the
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rheological properties of the fluid do not control the instability
mechanism, all the characteristics of the development of the wave
depend on those properties.

The first study of the phenomenonwas based on linear-stability
analysis of the basic equations written in the long-wave ap-
proximation and applied to the laminar current. It is possible to
predict the threshold and growth of the waves. In most cases, la-
minarNewtonian flows are analysed, deriving theOrr–Sommerfeld
equation for the amplitude of the perturbation [5–7]. A similar re-
sult was obtained by Chen [8], using the shallow-water equation
but including the spatial variation of the momentum coefficient.

In turbulent flow in rectangular channels, assuming a Chézy
resistance law with a constant coefficient, Jeffreys [9], Stoker [10]
and Liggett [11] found a critical Froude number of 2. Several
researchers, among them Iwasa [12], Koloseus and Davidian [13],
and Berlamont and Vanderstappen [14] highlighted the strong
sensitivity of the critical Froude number on the velocity profile,
the Reynolds number, and friction law. In particular, according
to Rouse [15] and Rosso et al. [16], the Darcy–Weisbach friction
factor increases along with the Froude number in supercritical
streams. According to Brock [17–19], no firm conclusion on such
a dependence can be drawn, because experimental data are not
accurate enough, especially the measurements of water depth.
Moreover, an apparent increment in the friction factor could better
be explained as an energy transfer from mean flow to waves (the
limiting case is a stationarywave, with finite amount of energy and
zero net flux).

Dressler [4] developed the finite-amplitude wave theory. In his
paper, Dressler described that the discontinuous periodic solutions
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Nomenclature

a Dimensional parameter in the friction law
b Non-dimensional parameter
bcrit, b′

crit First, second critical value of the non-dimensional
parameter b

c, crit Celerity of the wave, critical value of the celerity of
the wave c

F , Fcrit, F ′

crit Froude number, first/second critical Froude
number

fcrit Function in critical condition
g Acceleration due to gravity
H Height of the shock
J Energy slope
K Constant discharge per unit width in the moving

frame
l Length scale
m Resistance coefficient in the Chezy formula for

Newtonian fluids
n Fluid index
q Discharge per unit width
r Ratio of the normal stress in the x and in the y

direction
t Time
u,U Depth average velocity
Ub,Uf Depth average velocity in the back/front section
Uc Depth average velocity in the critical section
Un Normal velocity
vx Main stream fluid velocity component
x, ξ Longitudinal coordinate
y, Y Depth of the flow
Yb, Yf Depth of the flow in the back/front section
Yc Flow depth in the critical section
Ylim Limiting flow depth for instability growth
Ymax Maximum flow depth
Yn Normal depth of the flow
Y ∗

1 , Y ∗

2 Real positive solution of the numerator of the wave
profile

α, αb, αf Energy flux factor, in the back/front section
β, βb, βf Momentum flux factor, in the back/front section
γ = ρg Specific weight
1P Rate of change of mechanical energy in the shock
1Ej Energy dissipated in the shock
1Ef Mean energy dissipated for friction in a wavelength
λ, λmin Length of the wave, minimum value
ρ Mass density
τb Average boundary shear stress
θ Bottom inclination
∗ Operator indicating the non-dimensional value

are obtained by joining Bresse profiles with shocks. Dressler’s the-
ory, originally developed for fully turbulent flows, was extended
to laminar flows for Newtonian fluids by Ishihara et al. [20] and
to power-law fluids by Ng and Mei [21], who essentially focussed
on pseudoplastic fluids (mud) and detailed the analysis only for
shear thinning fluids. Prasad et al. [22] applied Dressler’s theory to
flowing dry grains at moderate low void concentration (the inter-
particle fluid is air). In their analysis, which was based on experi-
ments, the writers assume that a large increase in the volumetric
solid fraction takes place near the front of the wave. They approx-
imate the depth-averaged dispersed flow of the grain in a manner
similar to those of shallow fluid flow.

In addition, several laboratory experiments with water streams
were conducted by Ishihara et al. [20], Mayer [23], Brock [18], and
Julien and Hartley [24,25].
Most of the results available refer to the limit condition for the
existence of roll waves, but no one can infer the determination
of all roll-wave parameters (wavelength, wave height, celerity)
for a given system. There are some experimental indications from
Ponce and Maisner [26], who, using Brock’s data [18], found that
the observed periodic roll waves match the maximum growth rate
(in linear-stability analysis). Referring to frequency, Kapitza [27]
suggested that all waves are expected to be unstable, and the
least unstable are selected by the system. He also suggested that
the observed waves have the maximum absolute rate of energy
dissipation. A different criterion is developed by Ng and Mei [21],
who infer that the observed roll wave has the lowest amplitude
corresponding to no energy loss across the shock.

Kranenburg [28] has shown that short wavelength roll waves
are unstable to subharmonic disturbances, the growth of which
annihilates the roll waves through the mechanism of shock
coalescence and develop into roll waves of larger size. It holds true,
as output of numerical integration, for small-amplitudewaves, and
brings to a long roll wave even though no limits to the length is
given nor experimental verification is available.

We need to mention that the existence of natural roll waves
(i.e. not forced at the inlet, but developed as a natural growing
of instabilities) requires a minimum length of a given channel, as
pointed out byMontuori [29] for turbulent conditions and by Julien
and Hartley [25] for laminar conditions. Such minimum length
can be extreme, making difficult the experimental observation of
natural roll waves, in particular at low Froude number. Considering
that the nature of roll waves in a dilatant fluid is the same than
for Newtonian fluids, we can infer that a minimum length is also
required for granular flows in dense regimes.

In this paper, Dressler’s theory is extended to granular flows
in dense regimes. The friction law for dry, granular materials
flowing in a dense regime is a subject for research; our assumptions
are a simplification. In the present analysis, it is assumed that
grains behave like a power-law fluid, with a fluid index (the
exponent of the shear rate in the constitutive equation) of n = 2.
Dilatant fluids in which n = 2 were experimentally described
and modelled by Bagnold [30] for granular mixture at a relatively
high shear rate. They also correspond to dry, granular material
at large grain-volume concentrations and moderate shear rates.
We will assume this value for the fluid index, because it allows
some analytical solutions which are representative of numerical
solutions obtainable for a different value, but we need to mention
that Chen and Ling [31,32] and Hunt et al. [33] revisited Bagnold’s
data and concluded that the value of the fluid index is ∼1.5. It is
assumed that the fluid is homogeneous and that no segregation
occurs.

Rollwaves have beenobserved in experimental debris flows in a
rigid bed flumewith heterogeneous sediment and almost constant
volume concentration [34], developingwith characteristics similar
towater flow rollwaves. Usuallymost debris flows take the formof
strongly transient flows, often as almost periodic surges separated
by relatively low flow rate. To explain such behaviour hydraulic
instability is often cited in the literature.

The necessity to include the free surface waves in modelling
natural debris flows is required by a proper dimensioning of some
countermeasures to reduce the risk and the damage associated
withdebris flows. Amongst debris flowcountermeasures, direction
controlling works are used to guide to safe place the stream. These
works are excavated channels with cross section large enough to
handle peak flow discharge levels, i.e. the surges occurring in roll
waves [35].

The roll waves herein described are periodic, discontinuous
solutions with a discontinuity (shock) connecting a smooth profile
in a shallow-flow approximation. The waves are permanent and
move downstream with a celerity higher than the maximum fluid
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Fig. 1. Schematic of periodic waves with sharp front in shallow fluid flows.

velocity. We do not analyse stability of such special roll waves and
we assume that energy balance can control periodic permanent roll
waves. This is a pragmatic approach, even though we are aware
that a combination of criteria based on energy considerations and
stability could be a more complete approach to the problem.

The next section is devoted to deriving the basic equations
applying Karman’s momentum integral method and in Section 3
the description of the ‘special solution’ is reported, obtaining a
first admissibility condition detailed in Section 4. Some wave
characteristics are briefly described in Section 5. Shock conditions
and energy dissipation in the shock are analysed in Sections 6
and 7. The limiting discharge and the energy balance analysis in
the unstable stream are analysed in Sections 8 and 9. Discussions
and conclusions are given in Sections 10 and 11. The detailed
computations are reported in Appendices A–C.

2. Balance and conservation equations

Let us consider a 2D flow of a fluid down a plane of inclination θ .
The coordinate system has the x-axis along the bed and the y-axis
normal to it (Fig. 1). For long waves, we can assume that variations
in the flow occur on lengths larger than the thickness. Applying
Karman’s momentum integral method to mass conservation and
linear momentum balance, we obtain the following set of equa-
tions for a wide channel:

y,t + (uy),x = 0 (a)

u,t + βuu,x − (β − 1)
u
y
y,t + rg cos θy,x + u2β,x

= g sin θ −
τb

ρy
(b)

(1)

where u is the depth average velocity of flow function of the lon-
gitudinal coordinate x at time t, y is the depth of the flow, β is the
momentum flux factor (equal to 5/4 for a dilatant fluid in lami-
nar condition and with n = 2, [2, Eq. (2.16)]), and r is the ratio of
the normal stress in the x-direction to the normal stress in the y-
direction. τb is the boundary shear stress and ρ is themass density.
The first equation is the mass conservation; the second equation
is the momentum balance equation. For non-uniform flow, r could
dependon thedivergence of the flow [36] butmanynumerical sim-
ulations have shown that this ratio is equal to ∼1 for dense gran-
ular flows. For instance, Ertas et al. [37] found 0.97 < r < 1.02.

Introducing amoving reference having celerity c , and assuming
that in themoving reference the chosen state variablesU and Y are
functions of ξ = x − ct only (Fig. 2):

u (x, t) = U (x − ct) = U (ξ)

y (x, t) = Y (x − ct) = Y (ξ) .
(2)

The two equations (1)(a) and (1)(b) become
(UY ),ξ − cY,ξ = 0 (a)

−cU,ξ + βUU,ξ + c (β − 1)
U
Y
Y,ξ + rg cos θY,ξ

= g sin θ −
τb

ρY
(b)

(3)
Fig. 2. Definition sketch of a roll-wave profile in the moving frame.

where the spatial variation of the momentum flux correction
term has been dropped, even though this term should always be
retained in order to satisfy the principle of frame indifference [8].

Eqs. (3)(a) and (3)(b) can be rearranged as
U,ξ =

g

sin θ −

τb
γ Y


(U − c)

[(U − c) (βU − c) − c (β − 1)U − rgY cos θ ]
(a)

Y,ξ = −

gY

sin θ −

τb
γ Y


[(U − c) (βU − c) − c (β − 1)U − rgY cos θ ]

(b)

(4)

γ = ρg is the specific weight. Dividing the two equations and
integrating results:

U =
(cY − K)

Y
. (5)

K is the constant discharge per unit width in the moving frame. It
was denoted as ‘overrun’ by Chow [38] and ‘progressive discharge’
by Dressler [4]. The discharge in the fixed frame varies with space
and time.

For a dilatant power-law fluid with n = 2, the bottom shear
stress in a wide channel is

τb = ρa
U2

Y 2
(6)

and the energy slope is j = aU2/gY 3, where a is a parameter
(depending on the density, size, concentration of grains, and
internal friction for a granular mixture) with the dimension of a
square length.

On using (4)(b) and (5), the profile equation for progressing
waves reads:

Y,ξ =


gY 5 sin θ − a (cY − K)2


Y 2

c2βY 2 − c2Y 2 + rgY 3 cos θ − βK 2

 . (7)

Assuming a length scale for both horizontal and vertical directions
l = c2/g , Eq. (7) can be written in non-dimensional form as

Y ∗

,ξ∗ = sin θ


Y ∗5

− b (Y ∗
− K ∗)2


Y ∗2


βY ∗2 − Y ∗2 + rY ∗3 cos θ − βK ∗2

 (8)

where b =
a

sin θ

g2

c4
, Y ∗

⟨.⟩ = Y⟨.⟩g/c2, ξ ∗
= ξg/c2, K ∗

= Kg/c3 (c is
the velocity scale, l = c2/g is the length scale for both horizontal
and vertical directions, g = acceleration due to gravity).

3. The ‘special solution’

Owing to the kinds of functions obtained by integrating Eq. (8)
(logarithm, hyperbolic function, polynomials), no periodic solution
is forecast for the wave profile. A possible solution is a discontin-
uous periodic solution, piecing together continuous profiles with
shocks. Such a solution was suggested by Dressler [4] for Newto-
nian fluid. Dressler named it the ‘special solution’, and we will fol-
low the same definition. As for a Newtonian fluid, the solution has
to admit a region with supercritical mean velocity and a second
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region with sub-critical mean velocity (in the moving reference).
The two regions are separated by a critical section with mean ve-
locity equal to the critical velocity. The flow depth in the critical
section is Y ∗

c .
There is experimental evidence that a roll-wave profile in a

Newtonian fluid has a finite steepness in the critical section. We
assume that this holds true also for roll waves in a granular flow.
In Appendix A, we demonstrate that no solution with an inflection
point is possible.

As a consequence, the possible periodic solution requires that
the critical depth also be a root of the numerator in Eq. (8) in order
to have a finite steepness. The pole in Y ∗

= Y ∗
c must be erased. The

result is that both numerator and denominator vanish in Y ∗
c :

Y ∗2
c (β − 1) + rY ∗3

c cos θ − β

1 − U∗

c

2 Y ∗2
c = 0 (a)

Y ∗2
c − bU∗2

c = 0 (b)
(9)

Solving Eq. (9)(a), we obtain the mean velocity in the critical
section:

U∗

c1,2 = 1 ∓


1 −

1
β

+
r cos θ

β
Y ∗
c (10)

where only the solution with the negative sign satisfies the
condition of roll waves’ existence U∗ < 1 (c > U , [39]).

On using Eqs. (10) and (9)(b) yields

Y ∗3
c −

br cos θ

β
Y ∗

c − 2b +
b
β

+ 2b


1 −

1
β

+
r cos θ

β
Y ∗
c = 0. (11)

The interesting positive real solution can be obtained numerically
for fixed values of the parameters. The critical stream depth is
weakly influenced by bottom slope (it increases for increasing
bottom slope); it also increases for decreasing value of the ratio
r (not shown).

The apparent discharge is also constrained. Using mass conser-
vation and Eq. (9)(a) results in

K ∗2
=

Y ∗2
c (β − 1) + rY ∗3

c cos θ

β
. (12)

Substituting Eq. (12) in the wave profile (Eq. (8)) (and considering
that both numerator and denominator vanish in the critical sec-
tion), results in

Y∗

,ξ∗ = sin θ

[
Y∗4

+ Y∗
c Y

∗3
+ Y∗2

c Y∗2
+

Y∗3
c − b


Y∗

+
bY∗

c
β


(β − 1) + Y∗

c r cos θ
]

Y∗2

(β − 1)


Y∗ + Y∗

c

+ r cos θ


Y∗2 + Y∗

c Y∗ + Y∗2
c

 .

(13)

4. Limiting condition for a positive steepness of the profile

In order to construct roll waves from the previous profile,
it is necessary that dY∗

dξ∗


Y∗
c

> 0. The denominator in (13) is

always positive. In the critical section, we simply have to make the
numerator positive also

4Y ∗3
c +

br
β

Y ∗

c cos θ −
b
β

> 0 (14)

by assuming that Y ∗
c > 0.

Using Vandermonde determinants, we can conclude that of the
three roots of the polynomial inequality (14), one is real (Y ∗

c1) and
the two others are complex conjugate (Y ∗

c2 and Y ∗

c3), because the
inequality

1
4


b
β

2

+
1
27


br
β

cos θ

3

> 0 (15)
is always satisfied. The real root can be obtained in explicit form
and is always positive. Inequality (14) is satisfied if Y ∗

c > Y ∗

c1.
Having stated that, of the three solutions, two are complex

conjugates, without losing the information on the behaviour of the
real (and positive) solution, we can substitute the cubic term in
Eq. (11) into Eq. (14). Inequality (15) is now written as

5r cos θ

β
Y ∗

c + 8 −
5
β

> 8


1 −

1
β

+
r cos θ

β
Y ∗
c


. (16)

The argument of the square root is always positive. Squaring the
left and right sides results in

Y ∗2
c


25r2 cos2 θ


+ Y ∗

c (16βr cos θ − 50r cos θ)

+ 25 − 16β > 0. (17)

Inequality (17) is satisfied if Y ∗
c > 1

r cos θ
and Y ∗

c <
25−16β
25r cos θ

. Let us
verify inequality (17) for the two limits. Substituting the first limit
in (18) results in

4
r3 cos3 θ

> 0 (18)

which is always satisfied. Substituting the second limit results in

−
16b
25

+ 4

25 − 16β
25r cos θ

3

> 0 (19)

which is satisfied if

b < bcrit =
25
4


25 − 16β
25r cos θ

3

. (20)

The inequality (20) can also be expressed as

c > ccrit =


ag2r3

tan θ

1 + tan2 θ

 4
25


25

25 − 16β

3
1/4

. (21)

In this form, our findings indicate that, for a given bottom
inclination and a given rheological parameter of the dilatant
fluid, only waves with celerity higher than the critical celerity
can propagate. Considering that roll waves can exist only if the
condition c > U [39] is satisfied, if U > ccrit, the Whitham
inequality c > U is dominant and also automatically satisfies the
condition c > crit. If U < ccrit, Eq. (21) can be extended in the
form c > ccrit > U and permanent periodic finite-amplitude roll
waves can exist only if they have a celerity greater than the critical
celerity. Using the resistance law, the discharge per unit width q
has a limit given by the following inequality:

gq3 sin θ

a

1/5

<


ag2r3

tan θ

1 + tan2 θ

 4
25


25

25 − 16β

3
1/4

.

(22)

Eq. (22) can be solved in terms of the streamdepth for the stable
flow with the following result:

Y ∗ < Y ∗

crit ≡


4
25

1/6

br cos θ


25

25 − 16β


. (23)

Later, we shall verify that a second limit on the existence of roll
waves is related to the energy balance in the shock. Both limits shall
be discussed in Section 10.

For comparison, in a Newtonian fluid and for β = 1, assuming
a Chézy formula j =

m2

g
u2
y , the necessary condition for roll waves

derived imposing the positive steepness is 4m2 < tan θ [4];
making c > U , Dressler’s condition is equivalent to c > ccrit =

2
√
gY cos θ .
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5. Wave characteristics

It can be demonstrated that the numerator of the wave profile
between two subsequent shocks (Eq. (13)) has two real, positive
solutions and two complex, conjugate solutions. The profile can be
integrated obtaining a function ξ ∗ (Y ∗) involving logarithms and
trigonometric functions (see Appendix B). The length of the wave
is equal to

λ∗
= ξ ∗


Y ∗

b


− ξ ∗


Y ∗

f


. (24)

The average depth of the roll-wave profile is
Y ∗

=

1
λ∗

∫ Y∗
b

Y∗
f

Y ∗
dξ ∗

dY ∗
dY ∗ (25)

and the average discharge rate is
q∗

≡ U∗

n Y
∗

n =
1
λ∗

∫ λ∗

0
U∗Y ∗dξ ∗ (26)

where U∗
n and Y ∗

n are the normal velocity and flow depth. Using
Eq. (5) in non-dimensional form and spatially averaging results in
Y ∗

−

q∗

= K ∗. (27)

6. Shock conditions

The shock condition is obtained from the mass conservation
and momentum balance equations for a control volume across the
shock:

c [Y ]bf = [UY ]bf (a)

c [UY ]bf =

[
βU2Y +

1
2
gY 2r cos θ

]b
f

(b)
(28)

where the square brackets are the operator [⟨.⟩]bf = ⟨.⟩|b − ⟨.⟩|f
and b and f stand for the two control sections, back and front.
The weight of the roller and bottom friction have been neglected.
In extended and non-dimensional form, the mass conservation
equation (28)(a) is
1 − U∗

b


Y ∗

b =

1 − U∗

f


Y ∗

f = K ∗. (29)
The linear momentum balance equation (28)(b) can be written as

2

Y ∗

b − Y ∗

f


− 2


βbY ∗

b − βf Y ∗

f


+ 2K ∗2


βf Y ∗

b − βbY ∗

f

Y ∗

b Y
∗

f


+ 4K ∗


βb − βf


=

Y ∗

b − Y ∗

f

 
Y ∗

f + Y ∗

b


r cos θ (30)

where Eq. (12) has already been used.
For βb = βf = β , it reduces to

2 (1 − β)

Y ∗

b − Y ∗

f


+ 2βK ∗2


Y ∗

b − Y ∗

f

Y ∗

b Y
∗

f


=

Y ∗

b − Y ∗

f

 
Y ∗

f + Y ∗

b


r cos θ. (31)

The condition Y ∗

f = Y ∗

b is not compatible with the assumption
βb ≠ βf , because (31) reduces to

−
2
Y


βb − βf

 
Y ∗

− K ∗
2

= 0 (32)

which is satisfied only for βb = βf . Neglecting the trivial solution
Y ∗

f = Y ∗

b (no shock), (31) can be solved, obtaining the following
relation:

Y ∗

b = −

Y ∗

f

2
+

β − 1
r cos θ


+

Y ∗

f

2
+

β − 1
r cos θ

2

+
2βK ∗2

Y ∗

f r cos θ
(33)

where Y ∗

b > Y ∗

f > 0. On using mass conservation (12), it reads as
Fig. 3. Height of the shock vs. wavelength. The curves correspond to the condition
r = 1 and b = 0.01.

Y ∗

b = −

Y ∗

f

2
+

β − 1
r cos θ



+

Y ∗

f

2
+

β − 1
r cos θ

2

+
2Y ∗2

c


β − 1 + Y ∗

c r cos θ


Y ∗

f r cos θ
. (34)

The zero wavelength λ∗
→ 0 corresponds to Y ∗

→ Y ∗
c . The

maximum wavelength λ∗
→ ∞ corresponds to the maximum

depth in front of the shock (and the maximum wave height), and
is obtained for Y ∗

f → Y ∗

2 :

Y ∗

max = −


Y ∗

2

2
+

β − 1
r cos θ



+


Y ∗

2

2
+

β − 1
r cos θ

2

+
2Y ∗2

c


β − 1 + Y ∗

c r cos θ


Y ∗

2 r cos θ
. (35)

It decreases for larger values of β and for larger values of r (not
shown). The height of the shock is given by H∗

= Y ∗

b − Y ∗

f and is
reported vs. the wavelength in Fig. 3, for various slopes and flux
conditions. It tends to asymptotic values slightly dependent on
bottom inclination and is strongly influenced by the value of β .

7. Energy dissipation in the shock

The rate of change of mechanical energy across the jump is
equal to the following [39]:

1P =

∫ Y

0


1
2
ρv2

x + ρgy cos θ


(vx − c)

+ ρgr cos θ (Y − y) vx) dy

Yb

Yf

. (36)

Here, vx is themain stream fluid velocity component; the first term
in the argument of the integral represents the energy variation,
including the bodily transport across the boundary, and the second
term is the rate of working by the normal stress at the boundary.
The effects of bottom friction and body forces have been neglected.
Eq. (36) can be expressed in function of the depth average velocity
as

1P∗
= −

1
2


1 −

K ∗

Y ∗

b

2

Y ∗

b


αb − αb

K ∗

Y ∗

b
− βb



+
1
2


1 −

K ∗

Y ∗

f

2

Y ∗

f


αf − αf

K ∗

Y ∗

f
− βf
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− cos θ


Y ∗2
b

2


r −

K ∗

Y ∗

b
(1 + r)



−
Y ∗2
f

2


r −

K ∗

Y ∗

f
(1 + r)


(37)

where α is the energy flux factor. For a dilatant fluid with n = 2
and in laminar motion, α = 75/44 ≃ 1.705 [21].

Substituting the expression for discharge in the moving frame
and dividing by the discharge per unit width in the moving frame,
the energy drop across the jump, assuming αb = αf = α and
βb = βf = β , is

1E∗

j =


Y ∗

b − Y ∗

f


4Y ∗

b Y
∗

f


−


2Y ∗

b Y
∗

f

β

β − 1 + r cos θ


Y ∗

b + Y ∗

f


×


3α − αβ − β − β2

+ 3 (β − α) r cos θ

Y ∗

b + Y ∗

f



+
1
β


α (1 − β)


Y ∗

b + Y ∗

f


− αr cos θ


Y ∗

b + Y ∗

f

2
+ 4βr cos θY ∗

b Y
∗

f


. (38)

For α = β = 1 and for r = 1, (38) has the classical expression:

1E∗

j = − cos θ


Y ∗

b − Y ∗

f

3
4Y ∗

b Y
∗

f
. (39)

Having neglected the thermal energy contribution, a necessary
condition for a physically based shock is1E∗

j < 0, that is, the shock
dissipatesmechanical energy. The (mechanical) energy dissipation
condition in the shock limits the admissible values of Y ∗

f and Y ∗

b .
Some results are shown in Fig. 4. The physically admissible area is
the region Y ∗

f < Y ∗

b , also contoured by a curve fcrit(Y ∗

f , Y ∗

b ) = 0
in which 1E∗

j > 0. Note that if α = β = 1 and r = 1, the
critical curve has equation Y ∗

f = Y ∗

b , and the finite-amplitude
shocks always dissipate energy, whereas for different values of the
flux factors and of the parameter r , finite-amplitude shockwithout
energy dissipation is possible.

A sensitivity analysis indicates that increasing the bottom
inclination moves the critical curve towards higher values of
front/back stream depth. A reduction of the ratio r enlarges the
closed-hatched area, corresponding to energy production in the
jump (physically impossible). A reduction in the two factors α and
β moves the critical curve towardsmodest values of the front/back
stream depth.

If different factors are assumed, namely increasing the value of
factors from the minimum depth to the maximum depth, a double
band of wavelength with finite-amplitude shocks without energy
loss is allowed (not shown).

The limitation due to energy dissipation condition in the shock
corresponds to a limitation in wave height (Y ∗

f − Y ∗

b ) and is
equivalent to imposing a minimum wavelength. (Wavelength
increases with the wave height.)

A second limitation on the maximum value of the parameter
b is obtained by observing the energy balance in the hydraulic
jump and the function Y ∗

b (Y ∗

f ), describing the possible back–front
heights compatible with the mass and momentum balance for
a control volume across the shock. The curves are reported for
different values of the parameter b in Fig. 5.

In this figure a critical value b′

crit of b is reported, which is
explained in the following.
Fig. 4. Energy balance in the jump. The hatched area is unacceptable, because
Y ∗

f > Y ∗

b . The close-hatched area corresponds to energy production in the jump,
physically impossible. β = 1.25, α = 1.705, θ = 30°. The two fcrit curves
correspond to r = 1 and r = 0.95.

Fig. 5. Energy and momentum balance in the jump. The hatched area is
unacceptable, because Y ∗

f > Y ∗

b . The closed-hatched area corresponds to
energy production in the jump, physically impossible. The thick curves satisfy the
momentum balance across the shock, for different values of the parameter b. The
dashed-thick curve represents the maximum layer thickness, in front of the shock,
for different values of the parameter b, and corresponds to an infinite wavelength.
The limiting value b′

crit corresponds with a maximum height coincident with zero
energy dissipation in the jump (and also λ∗

min = λ∗
∞
). β = 1.25, α = 1.705, θ =

30°, r = 1, b′

crit = 0.00216.

Let us consider the thick curve corresponding to b = 5 ×

10−4. The starting point A is on the line Y ∗

b = Y ∗

f but it is not
admissible because it is in the region of energy production in
the shock, which is unphysical. The first useful point is B, at the
intersection with the curve fcrit(Y ∗

f , Y ∗
c , r = 1) = 0, where the

wavelength has the minimum possible value λ∗

min and the shock
is energetically admissible. Moving from point B to point C the
wavelength increases and reaches an infinite value at point C,
where the maximum flow depth is reached. For b = b′

crit the two
points B and C collapse. In this condition a maximum flow depth
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Fig. 6. Minimumwavelength compatible with energy dissipation in the shock. The
dashed branch is not admissible because it does not satisfy the criterion of energy
dissipation in the shock. β = 1.25, α = 1.705, θ = 30°, b′

crit = 0.00216.

Y ∗

b also satisfies the zero energy dissipation in the jump in a roll
wave having infinite wavelength. The critical value b′

crit is obtained
by numerically solving a strongly nonlinear system of equations
representing energy dissipation and momentum balance in the
shock.

Theminimumwavelength vs. the parameter b is shown in Fig. 6,
for flow conditions identical to those which refer to the diagram in
Fig. 5. The critical value of the parameter b fixed by the existence
condition of the wave profile (see Appendix A) is generally larger
than b′

crit. For instance, for the flow conditions of the test reported
in Figs. 5 and 6 we have bcrit ≡ 0.07698 > b′

crit.
The condition b < b′

crit is equivalent to

c > c ′

crit =


ag2

b′

crit sin θ

1/4

(40)

and with the same reasoning reported in Section 4 requires that

Y ∗ < Y
′
∗

crit ≡


b3

b′

crit

1/6

. (41)

Similar results were obtained by Ng and Mei [21] for mud
flows. On using the dissipation energy criterion in the shock, they
obtained aminimum discharge in themoving frame (equivalent to
a maximum discharge in the fixed frame), a minimum celerity of
the roll waves and a maximum wave number (corresponding to a
minimumwavelength). As for the limit described in Section 4, this
is not a necessary condition for roll waves, because the condition
c > U > c ′

crit also satisfies the Whitham criterion [39]. In
Section 10, there is a discussion of limiting discharge as computed
using limits (23) and (41).

7.1. The minimum-length roll wave (MLRW)

The requirement of a minimum energy dissipation in the shock
is met by the waves with a wavelength equal to λ∗

min. Herein,
these waves are called MLRW. The computation of the relevant
characteristics of the MLRW is carried out as follows:

(i) for given b (<b′

crit), θ, α, β , r , evaluate λ∗

min, Y
∗

b and Y ∗

f ;
(ii) evaluate Y ∗

c and K ∗ by solving (11) and (12);
(iii) solve for the average depth and the average discharge in the

fixed frame
(iv) on using the velocity law

U
√
gY

= Y


sin θ

a
(42)

as obtained using (6), evaluate the normal velocity and the
Froude number as
Fig. 7. Phase celerity as a function of the Froude number, β = 1.25, α =

1.705, r = 1.

Fig. 8. Profiles computed for a MLRW. β = 1.25, α = 1.705, r = 1, b =

0.00216, θ = 30°.

Y ∗

n = b1/5

q∗
2/5 (43)

F =
Y ∗
n

√
b cos θ

. (44)

The non-dimensional wave celerity is obtained as

c
Un

=


b

Y ∗3
n

. (45)

In Fig. 7, the MLRW celerity as obtained in the present model
is reported as a function of the Froude number, while in Fig. 8 the
wave profile, wave velocity and bottom stress are reported for a
MLRW.

8. Limiting discharge

In the present model, two possible limiting mechanisms are
detected. The first is related to the physical evidence of a positive
steepness of the roll waves in the critical section [4, see Appendix
A]. The second is related to the energy balance in the shock. Both
mechanisms limit the value of the parameter b; these limits can be
converted into a limiting thickness of the (normal) flow (Eqs. (23)
and (34)), even though they do not represent a necessary condition
for the existence of roll waves. They can be better converted in
terms of a limiting Froude number.
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If we express the Froude number corresponding to the limit in
(23) (first critical Froude number), we obtain

Fcrit =
Ucrit

√
gYcrit cos θ

≡ Ycrit


tan θ

a
≡

1

(bcrit)1/6
√
cos θ

≡
1 25

4

1/6 25−16β
25r

. (46)

The first critical Froude number Fcrit = Fcrit(β, r) is independent
of the bottom inclination and the rheological parameters of the
granular medium. For β = 1.02 (turbulent flow) and r = 1, we
have Fcrit = 1.25, while for β = 1.25 (laminar flow) and r = 1,
Fcrit = 1.65.

If we express the Froude number corresponding to the limit in
(34) (the second critical Froude number), we obtain

F ′

crit =
U ′

crit
gY ′

crit cos θ
≡ Y ′

crit


tan θ

a
≡

1
b′

crit

1/6 √
cos θ

. (47)

The computed value of F ′

crit does not depend on the value of the
parameter a; using the computed values of b′

crit, its results do not
depend on bottom inclination and are constant for given values
of α, β and r , i.e., F ′

crit = F ′

crit (α, β, r) with b′

crit ∝ cos−3 θ . For
α = 1.03, β = 1.02 (turbulent flow) and r = 1, we have
F ′

crit = 1.496 ± 0.001; for α = 1.704, β = 1.25 (laminar flow)
and r = 1, F ′

crit = 2.99 ± 0.01, while for r = 0.9 in laminar flow,
F ′

crit = 3.04 ± 0.01.
According to the present model finite-amplitude periodic roll

waves are unconditionally allowed above the limit corresponding
to F ′

crit, while they are allowed only if they satisfy the condition
c > ccrit below Fcrit.

9. Energy dissipation in the unstable stream

The mean energy dissipated for friction in a wavelength is
computed in non-dimensional form as

1E∗

f = −b sin θ

∫ Y∗
b

Y∗
f

U∗2

Y ∗3

1
Y ∗

,ξ∗

dY ∗ (48)

which can be written as

1E∗

f = −b sin θ

∫ Y∗
b

Y∗
f


1 −

Y∗
c

Y∗


β−1+rY∗

c cos θ

β

2
Y ∗3

1
Y ∗

,ξ∗

dY ∗. (49)

A stream in steady, uniform motion obviously results in 1E∗

f +

λ∗ sin θ = 0 for any value of the wavelength λ∗. In the presence of
roll waves, including the energy dissipated in the jump, the energy
balance over a wavelength results in

1E∗
= 1E∗

f + 1E∗

j + λ∗ sin θ. (50)
Assuming a friction law in non-uniform, unsteadymotion equal

to the friction law in steady, uniform motion, the energy budget is
generally a negative function. That is, the system dissipates more
energy than the energy gained from gravity.

The results of numerical integration are shown in Fig. 9. In the
vertical, the percentage of extra energy dissipation with respect
to the stable uniform stream is reported. The starting point cor-
responds to the MLRW, and all the curves have a maximum value
decreasing for lower bottom inclination. The jump enhances dis-
sipation, and the stream in unstable motion dissipates more than
the equivalent stream in stable, steady, uniformmotion (equivalent
means having the same average discharge with identical channel
characteristics). All the computations have neglected the finite size
of themoving shock, the contribution of the weight of the grains in
the shock, and the curvature of the trajectories. It has been demon-
strated that for roll waves inwater streams, inclusion of theweight
Fig. 9. Extra dissipation due to friction. β = 1.25, b = 0.01, r = 1.

of the fluid in the jump in linear momentum balance across the
shock tends to reduce the ratio Y ∗

b /Y ∗

f [19] and favours smaller
wavelengths. Surface tension contrasts the growth of instabilities
and rounds the wave crest [40] and the energy balance is very sen-
sitive to small variations in the parameters. Also, the assumption
of a different friction law gives different results. In a dry, granu-
lar stream, surface tension is not present, but all the other men-
tioned factors are present. According to Kapitza [27] and Ng and
Mei [21], the observed roll wave has the smallest mean energy av-
eraged over the wavelength. Such a roll wave clearly meets the
condition of finite-amplitude shock with zero dissipation across
it and has back/front depth on the critical curve, but still dissi-
pates more energy than the energy gained. Dressler’s hypothesis
(that a roll wave with a minimum of dissipated energy could be
present and hence could be the stable solution) unfortunately, is
not borne out, at least for granular flows. Unless a different fric-
tion law is included, to manage the boundary layer structure in the
presence of adverse gradient pressure, the energy budget is nega-
tive. Also, computing the energy budget of the MLRW for varying
b (and hence for varying wave celerity c at a given bottom incli-
nation θ ) results in a monotonic function, with extra dissipation
increasing with decreasing b. This result is not of much help in de-
termining the stable permanent roll wave.

10. Discussion

The present model, developed for finite-amplitude permanent
periodic waves, suggests a stabilizing effect of an increased dis-
charge, even though experiments are necessary to better quantify
the effects and to extend the validity of the approach to other gran-
ular media. Some doubts about the stability of the permanent pe-
riodic roll waves still remain. We need to mention that reports
on experiments on roll waves in water [18] make a substantial
difference between natural and periodic roll waves. The former
spontaneously appear in a channel as a result of amplification of
natural (non-imposed) disturbances and are generally not peri-
odic; the latter are periodic and are usually obtained by forcing
the inlet with a paddle and by adjusting the amplitude and period
of the paddle motion. This means that roll waves (in water) are
not necessarily periodic, and if periodic roll waves are stable, they
need aminimum length of the channel to become permanent. This
minimum length of the channel is of the order of thousands wave-
lengths and imposes severe restrictions on its feasibility in the
laboratory. If the results for roll waves in water hold true also for
granular roll waves, a typical length scale for the channel should
be of the order of several tens of meters. We can infer that roll
waves in a much shorter channel are presumably not ‘mature’, in
the sense that they have not acquired stable characteristics (if any).
It is also difficult to verify that they are strictly periodic.
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On the basis of the results obtained, twomain indications arise.
The first is that the resistance law adopted cannot be fully correct
in the unsteady motion analysed and the boundary layer structure
should be included in order to explain a reduced friction and dissi-
pation; the second is that we can infer that permanent roll waves,
as described in the present analysis, cannot completely fill the flow
system. They have to coexist with otherwaveswhich dissipate less
than the energy gained from gravity, leaving the excess for satisfy-
ing the energy balance. Otherwise, all the experimentally observed
roll waves are unstable [27], and would disappear if enough space
were given (not necessarily recovering a uniform stream).

Experimental investigations of roll waves in granular flowsmay
be of considerable help to further analysis. The new experiments
should be designed also with the aim of increasing the height of
the roll wave and the general vertical scale of the flow, in order
to eliminate some concerns that naturally arise modelling with a
continuum model a phenomenon where the flow depth can be of
the order of a few grain diameters.

It can be debated if the finite-amplitude permanent periodic
waves herein described are real and can have physical sense. There
are two important different approaches to the roll wave problem:
the first is based on stability, the second is based on energy consid-
erations.

The Kranenburg [28] results would suggest that instability of
short wavelength to longer wavelength perturbations ultimately
lead towavemergers and the coarsening ofwave trains. As a conse-
quence, nonlinear interaction dynamics would control completely
roll waves, whereas the shock properties would play no role.

Dressler [4], Ng and Mei [21], Prasad et al. [22] based their
analysis on the role played by energy in selecting finite-amplitude
roll waves and deal with permanent periodic waves. In the case
of a Newtonian fluid the properties of the minimum permanent
periodic roll wave (shortest wavelength and lowest amplitude
without energy loss in the shock) appear to be consistent with the
experimental data [21]. Also Prasad et al. [22], who carried out
a parametric study on a Dressler like model applied to a shallow
layer of flowing grains, obtained results well correlated with their
experimental data.

We share the opinion that a combination of criteria based on
energy consideration and linearised instability can be a reasonable
approach for studying roll waves [21]. It is plausible that the
initial waves that appear are related to the most unstable linear
waves, and the final waves are those that are selected by nonlinear
interactions, but a class of free surface instabilities belongs to
permanent periodic waves as those analysed in the present study.

11. Conclusions

The proposed solution for finite-amplitude roll waves in a
dilatant fluid shares many similarities with the solution proposed
by Dressler [4] for a Newtonian fluid and by Ng and Mei [21]
for mud. The solution is expressed as a discontinuous function
obtained by connecting two continuous profiles with a shock.
The continuous profiles are obtained in the shallow equation
approximation.

• In order to construct the profile between two shocks, it is
necessary that the steepness of the wave be finite and positive
in the section where critical condition is reached. It results
in the inequality b < bcrit, b being a non-dimensional group
based on rheological characteristics of the fluid, wave celerity,
and bottom inclination. The inequality can be converted
into a limiting minimum wave celerity for given rheological
parameters and bottom inclination and in a limiting (mean)
flow rate in the fixed frame. It can also be converted into a
limiting stream depth or a limit Froude number, which fixes
a threshold to the permanent periodic wave existence without
further conditions. This critical threshold is expressed as Fcrit =

Fcrit (β, r).
• The energy balance analysis in the shock reveals that, assuming

uniform flux factors (energy and momentum), in the back
and in the front of the shock, finite-amplitude shocks without
(mechanical) energy dissipation are allowed within a single
band ofwavelength. The limiting conditions are highly sensitive
to r , the ratio of the normal stress in the horizontal direction
to the normal stress in the vertical direction. The physical
consideration of a non-positive (mechanical) energy balance
in the shock requires that a second inequality (b < b′

crit) be
satisfied. This inequality, expressed in a similar fashion by Ng
and Mei [21] for mud flows, leads to the evaluation of a second
threshold expressed as F ′

crit = F ′

crit (α, β, r).
• A limiting Froude number guarantees for the existence without

further conditions of permanent periodic roll waves.
• Integration of the energy dissipation in the stream reveals that

the energy budget is a negative function, also in condition of no
dissipation in the shock, i.e., the systemwith permanent waves
dissipates more energy than the energy gained from gravity,
with a minimum for the MLRW.
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Appendix A

We demonstrate that no solution with an inflection point is
possible. In order to have a point of inflection, we should have
ξ,Y = 0 and ξ,YY = 0. Considering the reciprocal of Eq. (7):

ξ,Y =


c2 (β − 1) + rgY cos θ − βK 2/Y 2


gY 5 sin θ − a (cY − K)2


/Y 4

(A.1)

the first condition (ξ,Y = 0) requires that

c2Y 2 (β − 1) + rgY 3 cos θ − βK 2
= 0 (A.2)

with the further assumption that

gY 5 sin θ − a (cY − K)2 ≠ 0. (A.3)

The second condition (ξ,YY = 0) is imposed by differentiating
Eq. (A.1):

ξ,YY =


rg cos θ + 2βK 2/Y 3


1
Y4


gY 5 sin θ − a (cY − K)2


−


c2 (β − 1) + rgY cos θ − βK 2/Y 2


1
Y8


gY 5 sin θ − a (cY − K)2

2
×


g sin θ − a


6cK/Y 4

− 2c2/Y 3
− 4K 2/Y 5

= 0 (A.4)

which reduces to

ξ,YY =


rg cos θ + 2βK 2/Y 3


1
Y4


gY 5 sin θ − a (cY − K)2

 = 0 (A.5)

due to (A.2). The denominator is different from zero by assumption
(Eq. (A.3)), but also because the numerator cannot be zero, since
rg cos θ + 2βK 2/Y 3 is always positive.
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Appendix B

Defining the four roots as Y ∗

1 , Y ∗

2 , Y ∗

3 , and Y ∗

4 , with the first two
real and with 0 < Y ∗

1 < Y ∗

2 , Eq. (13) can be written as

Y ∗

,ξ∗ = sin θ


Y ∗

− Y ∗

1

 
Y ∗

− Y ∗

2

 
Y ∗

− Y ∗

3

 
Y ∗

− Y ∗

4


Y ∗2


(β − 1)


Y ∗ + Y ∗

c


+ r cos θ


Y ∗2 + Y ∗

c Y ∗ + Y ∗2
c

 . (B.1)

In addition, for b < bcrit the result also is 0 < Y ∗

1 < Y ∗

2 < Y ∗
c .

The inverse function representing the wave profile Y ∗−1 can be
obtained by integration:

ξ ∗
= C +

rY ∗

tan θ
+

1
sin θ

f1 tan−1


Y ∗

− Re

Y ∗

3


Im

Y ∗

3

 

+
1

sin θ
f2 ln


Y ∗

− Y ∗

1


+

1
sin θ

f3 ln

Y ∗

− Y ∗

2


+

1
sin θ

f4

× ln

Y ∗2

− 2Y ∗Re

Y ∗

3


+ Re


Y ∗

3

2
+ Im


Y ∗

3

2 (B.2)

where f1, f2, f3, and f4 are functions of Y ∗

1 , Y ∗

2 , Re(Y
∗

3 ), Im(Y ∗

3 ), Y ∗
c ,β ,

θ, r . Re(. . . ) and Im(. . . ) stand for real and imaginary parts, and Y ∗

3
is one of the complex roots. The constant can be chosen, making
Y ∗(0) = Y ∗

c , and the next waves are obtained by translating the
above function of a value equal to a multiple of the length of the
wave. The profile has the following equation:

ξ ∗

Y ∗


=
r

Y ∗

− Y ∗
c


tan θ

+
1

sin θ
f1


tan−1


Y ∗

− Re

Y ∗

3


Im

Y ∗

3

 

− tan−1


Y ∗
c − Re


Y ∗

3


Im

Y ∗

3

 
+

1
sin θ

f2 ln

Y ∗

− Y ∗

1

Y ∗
c − Y ∗

1


+

1
sin θ

f3 ln

Y ∗

− Y ∗

2

Y ∗
c − Y ∗

2


+

1
sin θ

f4

× ln


Y ∗2

− 2Y ∗Re

Y ∗

3


+ Re


Y ∗

3

2
+ Im


Y ∗

3

2
Y ∗2
c − 2Y ∗

c Re

Y ∗

3


+ Re


Y ∗

3

2
+ Im


Y ∗

3

2


. (B.3)

Appendix C

Following Ng and Mei [21], we give a definition of critical
section and demonstrate that the critical depth is a zero of both
numerator and denominator of Eq. (8).

The two conservation laws (1)(a) and (1)(b) can be written in
matrix form as

∂

∂t


y
u


+ A

∂

∂x


y
u


= B (C.1)

where

A =

 u y

(β − 1)
u2

y
+ rg cos θ (2β − 1) u

 ,

B =


0

g sin θ −
τb

ρy


.

(C.2)

A has the two real distinct eigenvalues λ±
= βu ±

β(β − 1)u2 + rgy cos θ corresponding to two families of charac-
teristics:

(dx/dt)± = βu ±


β(β − 1)u2 + rgy cos θ. (C.3)

The adjacent characteristics of the positive family (dx/dt)+ can
intersect generating a shock. Considering the relation:

u = c −
K
y

(C.4)
if y increases u increases and also the inclination of (dx/dt)+
increases. The behaviour is opposite for decreasing y. If part
of the wavelength has a decreasing profile, two regions with
increasing and decreasing characteristics are present, and a shock
could be formed, contradicting the hypothesis of smoothness. As
a consequence, the profile has to be monotonically increasing
between yf and yb and with (dx/dt)+f < c < (dx/dt)+b .

A critical characteristic must exist in a critical section, where
(dx/dt)+c = c with a flow depth yf < yc < yb and a fluid velocity
uf < uc < ub.

On the left side of (dx/dt)+c = c (where yf < y < yc and
uf < u < uc) we have (dx/dt)+ < c. On the right side of
(dx/dt)+c = c (where yc < y < yb and uc < u < ub) we have
(dx/dt)+ > c .

It can be demonstrated that the characteristics of the negative
family, (dx/dt)− are advancing slowly than c . As a consequence,
a disturbance applied on the left side of the critical section will
propagate only downstream, whereas a disturbance applied on
the right side of the critical section will propagate upstream and
downstream. This is the definition of supercritical and sub-critical
flows.

Now we demonstrate that the critical depth is a zero of the
denominator and of the numerator of the flow profile (Eq. (8)).

The flow in the critical section satisfies the condition:

c = βuc +


β(β − 1)u2

c + rgyc cos θ

→ c = βUc +


β(β − 1)U2

c + rgYc cos θ (C.5)

which in non-dimensional form, is equivalent to Eq. (9)(a), i.e. Yc is
a zero of the denominator.

We can also demonstrate that the critical depth is also a zero of
the numerator.

The left eigenvector L+ corresponding to λ+ has the following
two components:

L+

1 =
(β − 1) u2

y
+ rg cos θ,

L+

2 = (β − 1) u +


β (β − 1) u + rgy cos θ

(C.6)

(by definition, the left eigenvector satisfies the equation {L+

1 , L+

2 }A
= λ+

{L+

1 , L+

2 }).
Multiplying L+ by system (C.1) the following equation is

obtained:

L+

1
dy
dt

+ L+

2
du
dt

= L+

2


g sin θ −

τb

ρy


. (C.7)

Along the critical characteristic (dx/dt)+c = c the flow depth yc
and the flow velocity uc (Yc and Uc) are invariant:

dy
dt

=
du
dt

= 0, if
dx
dt

= c. (C.8)

As a consequence, the right-hand side of Eq. (C.7) is zero:

L+

2


g sin θ −

τb

ρy


(yc ,uc )

= 0

→ L+

2


g sin θ −

τb

ρY


(Yc ,Uc )

= 0. (C.9)

L+

2 is always positive and the equation reduces to
g sin θ −

τb

ρY


(Yc ,Uc )

= 0 (C.10)

which, in non-dimensional form, is equivalent to Eq. (9)(b), i.e. Yc
is a zero of the numerator.
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