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Spreading of gravity currents in porous media has traditionally been investigated analytically by means
of similarity solutions under the Dupuit–Forchheimer approach. We present a novel formulation to ana-
lyse the axisymmetric propagation of single-phase gravity currents induced by the release of a time-var-
iable volume of fluid in a porous domain. Our approach is based on a first order expansion of the velocity
potential that allows for the presence of vertical Darcy velocities. Coupling the flow law with mass bal-
ance equations leads to a PDE which admits a self-similar solution for the special case in which the vol-
ume of the fluid fed to the current increases at a rate proportional to t 3. A numerical solution is developed
for rate proportional to ta with a – 3. Current profiles obtained with the first order solution have a finite
height at the origin. Theoretical results are compared with two experimental datasets, one having fresh-
water and the other air as an ambient fluid. In general, experimental current profiles collapse well onto
the numerical results; the first order solution shows a marked improvement over the zeroth order solu-
tion in interpreting the current behaviour near the injection point. A sensitivity and uncertainty analysis
is conducted on both the first order and zeroth order theoretical model. The sensitivity analysis indicates
that the flow process is more sensitive to porosity variations than to other parameters. The uncertainty
analysis of the present experimental data indicates that the diameter of glass beads in an artificial porous
medium is the source of most of the overall uncertainty in the current profile.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Flows in porous media driven by the force of gravity acting on
density differences between an intruding and an ambient fluid
are usually termed gravity currents, and are frequent in many envi-
ronmental and industrial processes. Notable examples include
injection of gas or liquid into natural reservoirs to improve recov-
ery of oil and heat, release of agents or environmental carriers into
aquifers for remediation of groundwater contamination, carbon
dioxide sequestration in deep formations to reduce greenhouse
gas emissions, and saltwater intrusion in coastal aquifers. These
important applications, with far-reaching economic implications,
have prompted in the past three decades the development of sig-
nificant research advances, both of theoretical and experimental
nature, on the propagation of gravity currents in porous media.
Among these, a number of closed-form approaches were developed
to analyse one-phase flows in a variety of geometric settings and
with different boundary conditions. Noteworthy examples include
flow over an horizontal surface in plane (Huppert and Woods,
1995) and radial geometry (Lyle et al., 2005) generated by an
instantaneous or continuous release of fluid. These solutions were
extended to incorporate two-layer flow (Woods and Mason, 2000),
the effect of a sloping bottom (Vella and Huppert, 2006; Koussis
et al., 2012), the action of impermeable confining boundaries
(Golding and Huppert, 2010), and drainage effects (Pritchard
et al., 2001). In other cases, the volume of fluid injected in the ori-
gin of a semi-infinite porous domain is not conserved, as the fluid
mound partially drains back; the corresponding initial value prob-
lem for an instantaneous injection is known as the dipole, as the
first spatial moment of the mound is conserved. The closed-form
solution to this problem, originally derived by Barenblatt and
Zel’dovich (1957), was extended by King and Woods (2003) to
include drainage and by Mathunjwa and Hogg (2007) to incorpo-
rate a vertical variation in permeability.

All of these studies rely on a thin-current assumption, in which
the component of Darcy flow perpendicular to the main direction
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Fig. 1. Layout of the problem.
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of motion is neglected, applying the Dupuit–Forchheimer approx-
imation. This entails a logarithmic singularity at the origin of a
radial coordinate system, as clearly shown by Dussan and
Auzerais (1993) and further discussed by Li et al. (2005) and Di
Federico et al. (2012).

Several different approaches were developed to remove this
approximation and describe the flow field more accurately.
Dagan (1967) derived a second order approximate theory for
steady free surface 2-D flow in porous media via matched asymp-
totic expansions, demonstrating that the zero order term of the
expansion coincides with the Dupuit–Forchheimer approximation.
He adopted a general shallow-flow expansion introducing a small
parameter to stretch differently the horizontal and the vertical
coordinates, then assumed an expansion of the potential involving
powers of the square of the small parameter; the series included
only even powers to match the inner and the outer expansion.
An extension to axisymmetric geometry to deal with pumping
wells was developed with a similar mathematical technique by
Dagan (1968). The modelling of groundwater periodic motion in
aquifers, as generated by tidal excursions, often requires an exten-
sion of the zeroth order theory in order to include the effects of
vertical velocity and remove the hydrostatic hypothesis. To this
purpose, a shallow water expansion was adopted in Parlange
et al. (1984) to evaluate a hierarchy of functions representing the
terms of a series development of the hydraulic head.

An asymptotic expansion in the vertical-to-horizontal aspect
ratio was adopted by Yortsos (1995), who also included the effects
of different permeabilities in the vertical and horizontal direction.
He demonstrated rigorously that the Dupuit approximation (and
several other approximations in different contexts) is obtained
considering only the leading order term of the expansion.

A step-wise approach, where the zeroth order term corresponds
to the Dupuit–Forchheimer approximation, was adopted in Nielsen
et al. (1997) to model tidal water table waves. They introduced the
effects of a vertical velocity varying linearly in the vertical on the
pressure field. A similar approach is also reported in Knight
(2005) for several test-case problems.

In a similar way, Nordbotten and Celia (2006) developed a
scheme to correct the vertical equilibrium model (i.e., Dupuit
approximation) by introducing a vertical velocity with a linear var-
iation, that was observed in numerous numerical simulation; as a
consequence, the pressure variation in the vertical is quadratic. de
Loubens and Ramakrishnan (2011) gave a formal justification of
the vertical equilibrium approach through a perturbation theory,
without making assumptions on the pressure distribution.

Here, we adopt a series expansion of the velocity potential
which is polynomial in the vertical coordinate and contains only
even terms as a consequence of the no-flow boundary condition
at the horizontal bottom. The asymptotic expansion is in power
of a small parameter equal to the ratio between vertical and hori-
zontal length scales; at the zeroth order, it reduces to the Dupuit
approximation, like the approaches of other researchers. All the
terms in the series are expressed iteratively as space derivatives
of the zeroth order potential. While other approaches (e.g.,
Dagan, 1967) adopt a series with only even powers, to our knowl-
edge the derivation of the higher order terms as a function of the
zeroth order term is novel in the field of flow in porous media. This
relationship is an advantage since it allows the direct implementa-
tion of the effects at every order without a hierarchical approach,
albeit with an increase in the order of the differential problem
describing the physical processes.

The aforementioned approach is used to derive a first order cor-
rection to the similarity solution developed by Lyle et al. (2005) to
analyse the spreading of a gravity current in a porous medium in
radial geometry. The solution thereof was successfully used to
interpret accumulation of supercritical carbon dioxide beneath
low-permeability mudstone layers at the Sleipner site in the North
Sea (Bickle et al., 2007), following injection of CO2 at an approxi-
mately constant rate since 1996. An extension of their formulation
allowing for nonzero vertical components of the velocity field may
be of interest also in view of recent further refinements of the
model incorporating two-phase flow (Golding et al., 2013). The
present approach can be of interest also in all flows characterised
by relevant gradient of the interface and possibly in non stationary
conditions, such as coastal salt water intrusion under the effect of
tidal fluctuations.

The paper is organised as follows. Section 2 presents the theo-
retical formulation of the problem, while Section 3 illustrates the
results, obtained with self-similar transformation in the special
case a = 3 and via numerical integration in the general case. In
Sections 4 and 5, theoretical results are compared with laboratory
experiments. Section 4 describes the experimental apparatus used
by Longo et al. (2013) to analyse the spreading of gravity currents
in porous media, and illustrates the comparison with their experi-
ments. Throughout the analysis, the sources of uncertainty in the
modelling approach and their respective weights are highlighted.
A systematic comparison with results from a second experimental
dataset by Lyle et al. (2005) is presented in Section 5 following the
same approach. A more extensive comparison of the theoretical
model with experimental results is available online as Supplemen-
tary Material.

A set of conclusions (Section 6) closes the paper, while the
Appendix includes further details on the model sensitivity analysis.

2. Formulation of the problem

Consider an axisymmetric gravity current of a Newtonian liquid
of density q propagating above an horizontal impermeable bound-
ary and intruding in an infinite porous domain of depth h0, satu-
rated with an ambient fluid of density q � Dq (Fig. 1).

The current is released into the porous medium by a line source
along the vertical axis, extends from the origin to a coordinate
denoted by rN (t), and has a volume given by Qta, where Q and a
are positive constants, and a = 0 and a = 1 indicate respectively
an instantaneous release of a fixed volume and a constant volume
influx; the actual discharge for a – 0 is given by Qd = aQta�1. The
equation of mass conservation is

r � u ¼ 0; ð1Þ

with u = (u,w) representing Darcy velocity, given by Darcy’s law
(Bear, 1988; Phillips, 1991; Dullien, 1992):



240 S. Longo, V. Di Federico / Journal of Hydrology 519 (2014) 238–247
u ¼ � kð/Þ
l
ðrpþ qgjÞ; ð2Þ

where j is a unit vector in the vertical direction, p the pressure, l the
dynamic viscosity, k and / the porous medium intrinsic permeability
and porosity, respectively. We assume that the intruding current is
relatively thin when compared to the thickness h0 of the porous
domain, allowing to neglect the dynamics of the ambient fluid. This
assumption may become questionable at the later stages of a contin-
uous injection, if the volume increase of the current is rapid enough to
determine an increase of the height of the current with time at a given
location. Hence adhering to this hypothesis places limitations on the
value of the injection parameter a and other problem parameters; for
a discussion see Golding and Huppert (2010) and Di Federico et al.
(2014). We further assume the validity of the sharp interface approx-
imation, allowing to describe the intrusion essentially via a single
height function. The resulting model is valid until diffusion and dis-
persion effects influence considerably the dynamics of the current.
The interface is considered to be stable, and surface tension effects
are taken to be negligible, as there is no capillary entry pressure lim-
iting the migration of the injected fluid through the pores of the med-
ium. Under these hypotheses, the boundary between the current and
the ambient fluid is described by the equation F(r, z, t) � z � h(r, t) = 0,
with h(r, t)� h0 being the current height. The kinematic condition at
the interface requires that

@h
@t
þ u

@h
@r
¼ w; at z ¼ h; ð3Þ

while the boundary condition at the leading edge is

h ¼ 0; at r ¼ rNðtÞ: ð4Þ

The additional boundary conditions are

w ¼ 0; at z ¼ 0;
p ¼ p0 þ ðq� DqÞgðh0 � hÞ; at z ¼ h:

ð5a;bÞ

Implying respectively an impervious horizontal bottom and an
hydrostatic pressure distribution in the ambient fluid, where p0 is
the pressure at the level h0. Conditions (5a,b) and (4) inserted in
Eq. (3) state that the front end of the intruding current moves with
the horizontal fluid velocity at the contact line

drN

dt
¼ uN : ð6Þ

Combining the mass balance Eq. (1), the kinematic conditions at the
interface (3) and at the bottom (5a), and the hydrostatic assumption
in the ambient fluid (5b) results in (e.g. Ungarish, 2010)

1
r
@

@r
ðr�uhÞ ¼ �/

@h
@t
; ð7Þ

where �u is the z-averaged radial velocity of the current.
By introducing the potential field variable u = p/qg + z, Eqs. (1)

and (2) are recast for a homogeneous flow field as

r2u ¼ 0 ð8Þ

with the boundary conditions
@u
@z
¼ 0; at z ¼ 0;

u ¼ q� Dq
q

h0 þ
p0

qg
þ Dq

q
h; at z ¼ h;

ð9a;bÞ

where (q � Dq)h0/q + p0/qg can be set to zero without loss of
generality.

In axisymmetric geometry, the components of Darcy velocity
are given by

u ¼ � kqg
l

@u
@r

;

w ¼ � kqg
l

@u
@z

;

ð10a;bÞ
where the tangential velocity has been neglected for symmetry
reasons.

As a first approximation, the potential u depends only on r and t
and the velocity components (10a,b) become

u ¼ � kqg
l

@h
@r
;

w ¼ 0;
ð11a;bÞ

while the pressure distribution is hydrostatic and the equipotential
surfaces are cylinders coaxial to the axisymmetric intruding current.
These are known as Dupuit assumptions, extended to unsteady
flows by Boussinesq; they constitute a good approximation in
regions where the curvature of the interface is small and the flow
is mainly horizontal, but can lead to paradoxes (Bear, 1988).

To develop a higher order approximation, we introduce the
arbitrary length scales r* and h* in the horizontal and vertical direc-
tions, respectively, and the arbitrary time scale t*. Introducing the
non dimensional variables ~r ¼ r=r�;~z ¼ z=z�;~t ¼ t=t�, the dimen-
sionless version of Laplace Eq. (8) reads in cylindrical coordinates
under symmetry:

1
~r
u;~r þu;~r~r þ

1
-2 u;~z~z ¼ 0; - ¼ h�

r�
; ð12Þ

where subscripts following a comma indicate partial differentiation.
Let us assume that the potential uð~z;~r;~tÞ can be expressed in a ser-
ies of terms

u ¼ u0ð~r;~tÞ þ ~zu1ð~r;~tÞ þ ~z2u2ð~r;~tÞ þ . . .þ ~znunð~r;~tÞ

�
X1
n¼0

~znunð~r;~tÞ: ð13Þ

It then follows that the two terms appearing in the Laplace Eq.
(12), are

1
~r
u;~rþu;~r~r ¼

1
~r
u0;~rþu0;~r~rþ

~z
~r
u1;~rþ~zu1;~r~rþ . . .þ

~zn

~r
un;~rþ~znun;~r~r

�
X1
n¼0

~zn 1
~r
un;~rþun;~r~r

� �
;

u;~z~z¼2u2þ6~zu3þ . . .þnðn�1Þ~zn�2un�
X1
n¼0

ðnþ2Þðnþ1Þ~znunþ2:

ð14a;bÞ

Substituting (14a,b) in (12) yieldsX1
n¼0

1
~r
un;~r þun;~r~r þ

1
-2 ðnþ 1Þðnþ 2Þunþ2

� �
~zn ¼ 0: ð15Þ

Eq. (15) is satisfied for every value of the argument ~z only if all
the terms in square brackets are individually equal to zero, i.e.:

1
~r
u0;~r þu0;~r~r þ

2
-2 u2 ¼ 0;

1
~r
u1;~r þu1;~r~r þ

6
-2 u3 ¼ 0;

. . .
1
~r
un;~r þun;~r~r þ

1
-2 ðnþ 1Þðnþ 2Þunþ2 ¼ 0:

ð16Þ

The last expression is a recursive formula and gives the expres-
sion of the nth term as a function of the (n � 2)th term.

The no-flow condition at the horizontal bottom (9a,b) requires
that:X1
n¼0

ðnþ 1Þ~znunþ1 ¼ 0; at ~z ¼ 0: ð17Þ

Since all the terms in the summation are zero in ~z ¼ 0 except
u1, Eq. (17) is satisfied if u1 = 0. As a consequence of the recursive
formula, all the terms of the series with odd indices are null and
the series (13) can be written as
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u ¼ u0 �
-2

2
~z2 1

~r
u0;~r þu0;~r~r

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first order term

þOð-4Þ: ð18Þ

The former expression is known as the Rayleigh expansion since
it was originally introduced by Rayleigh for modelling the gravity
water waves propagation over a flat impermeable bed. Eq. (18)
approximates an infinite series, and the magnitude of the first
omitted term corresponds to the magnitude of all omitted terms
providing that the expansion is asymptotic in the domain for
- ? 0. In (18), u0, is defined as the zeroth order term, while the
first order term has coefficient -2, and so on.

Reverting to dimensional form, it is immediate to obtain the
velocity field upon deriving Eq. (18) as

u ¼ � k
l

qgru0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
zeroth order term

þ kqg
2l
r z2 1

r
u0;r þu0;rr

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first order term

þ . . . ; ð19Þ

where terms of order O(-4) were neglected. The velocity compo-
nents become in cylindrical coordinates

u ¼ � k
l

qgu0;r|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
zeroth order term

þ kqg
2l

1
r
u0;rr �

1
r2 u0;r þu0;rrr

� �
z2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first order term

þ . . . ;

w ¼ kqg
l

1
r
u0;r þu0;rr

� �
z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first order term

þ . . . :

ð20a;bÞ

The equivalent of the series in Eq. (20a,b) was introduced in
Nielsen et al. (1997) for planar free surface seepage flow over a
horizontal bed, with the adoption of an infinite order operator.
The vertical velocity (20a,b) shows a linear variation with z, as in
Yortsos (1995), Nielsen et al. (1997) and Knight (2005).

At the zeroth order, Eqs. (9a,b-18) indicate that at the interface

u0 ¼
Dq
q

h; ð21Þ

and assuming that (21) approximately holds at higher orders,
Eq. (20a,b) recasts as

u ¼ � kDqg
l

@h
@r|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

zeroth order term

þ kDqg
2l

1
r
@2h
@r2 �

1
r2

@h
@r
þ @

3h
@r3

 !
z2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
first order term

þ . . . ;

w ¼ kDqg
l

1
r
@h
@r
þ @

2h
@r2

 !
z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first order term

. . . :

ð22a;bÞ

Note that (i) the approximation at the interface, with
u � u0 = (Dq/q)h is a linearisation of the differential problem,
since we include higher terms in the expression of the potential
but impose the boundary condition at the interface corresponding
to the zeroth order field. As a consequence, the pressure field is
independent on the interface as modulated by higher order terms
of the potential and is computed referring to the zeroth order. In
this respect, similar approximations have been used and discussed
by several authors (see, e.g., Dagan, 1967; Dagan and Bear, 1968;
Nordbotten and Celia, 2006); (ii) truncating the terms of order
-4 is consistent with the assumption that the potential is
expressed by an asymptotic expansion.

Introducing Eq. (22a,b) in Eq. (7) and integrating results in

k
l

Dqg
1
r
@

@r
rh
@h
@r
� r

h3

6
1
r
@2h
@r2 �

1
r2

@h
@r
þ @

3h
@r3

 ! !
¼ /

@h
@t
: ð23Þ
Moreover, global continuity requires

2p/
Z rNðtÞ

0
rhðr; tÞdr ¼ Qta: ð24Þ

Introducing the dimensionless variables T = t/t*, R = r/r*, RN = rN/r*,
H = h/r*, Z = z/r*, U = u/m*, W = w/m* where the time, space and velocity
scales are t� ¼ Q=ð/m�3Þ

� �1=ð3�aÞ, r* = m* � t*, m* = Dqgk/(/l), recasts
Eqs. (23) and (24) for a – 3 as

1
R
@

@R
RH

@H
@R
� 1

6
H3 @

2H

@R2 þ
1
6

H3

R
@H
@R
� 1

6
RH3 @

3H

@R3

" #
� @H
@T
¼ 0; ð25Þ

2p
Z RNðTÞ

0
RHdR ¼ Ta; ð26Þ

and Eq. (4) as

HðRNðTÞ; TÞ ¼ 0: ð27Þ

The dimensionless velocities become

U ¼ �/
@H
@R
þ 1

R2

@H
@R
� 1

R
@2H

@R2 �
@3H

@R3

 !
Z2

2

" #
;

W ¼ /
1
R
@H
@R
þ @

2H

@R2

 !
Z:

ð28a;bÞ

For a = 3 the time scale defined above is no longer valid and a new

velocity scale enters the problem, m�1 ¼ ðQ=/Þ
1=3 (Vella and Huppert,

2006). With the new set of dimensionless variables T = t/t*, R = r/r*,
RN = rN/r*, H = h/r*, Z = z/r*, U = u/m*, W = w/m* where the space scale
is r* = (Q//)1/3 � t*, and the time scale t* is arbitrary, Eqs. (23) and
(24) give

dr

R
@

@R
RH

@H
@R
� 1

6
H3 @

2H

@R2 þ
1
6

H3

R
@H
@R
� 1

6
RH3 @

3H

@R3

" #
� @H
@T
¼ 0; ð29Þ

2p
Z RNðTÞ

0
RHdR ¼ T3; ð30Þ

where dr ¼ m�=m�1 is the ratio between the two velocity scales, while
the boundary condition expressed by Eq. (26) still holds.

3. Solution of the problem

The differential problem given by (24)–(26) requires a numerical
solution for the general case a – 3, while it admits a similarity solu-
tion for the special case a = 3 (Eqs. (24)–(26) reduce to (28)–(29)
together with (26)). It is worth noting that in the context of a differ-
ent study on viscous gravity currents, namely 2-D free-surface intru-
sions flowing over a deep porous medium, Acton et al. (2001)
similarly found that self-similar solutions could be obtained only
for a = 3.

3.1. Self-similar solution

Introducing the similarity variable

g ¼ RT �1 ð31Þ

and denoting by gN the value of g for R = RN(T), the current exten-
sion is given by

RNðTÞ ¼ gNT: ð32Þ

With Eq. (31), the similarity solutions of Eqs. (28) and (29) is

HðR; TÞ ¼ g2
NTwðfÞ; f ¼ g=gN ð33Þ

and the differential problem given by Eqs. (28) and (29) plus
Eq. (26) becomes



242 S. Longo, V. Di Federico / Journal of Hydrology 519 (2014) 238–247
dr
d
df

fw
dw
df
þ 1

6
w3 1

f
dw
df
� d2w

df2 � f
d3w

df3

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

first order correction

2
66664

3
77775þ f2 dw

df
� fw ¼ 0;

gN ¼ 2p
Z 1

0
fwðfÞdf

� ��1=4

;

wðf ¼ 1Þ ¼ 0:
ð34a;b; cÞ

The dimensionless velocities are, for Z 6 H(R,T),

U¼�/gN
dw
df
þ dw

df
�f

d2w

@f2 �f2 d3w

@f3

 !
Z2

2R2

" #
;

W¼/gN
dw
df
þf

d2w

@f2

 !
Z
R
:

ð35a;bÞ

The numerical integration of the fourth order differential equa-
tion in (34a,b,c) requires specifying four boundary conditions at
f = 1 � e, with e being a small quantity. To obtain these, we develop
a Frobenius expansion of (34a,b,c) near the current tip. Introducing
the variable v = 1 - f, we seek a solution as v? 0 in the form:

wðvÞ ¼
X1

0

akvkþb; ð36Þ

where b is the indicial exponent. Eq. (36) already fulfils the bound-
ary condition w(v ? 0) = 0. Equating the exponents of the lowest
powers of v (for k = 0) gives b = 1, while equating to zero the coef-
ficients of powers of v yields:

a0 ¼
1
dr
; a1 ¼

1
4dr

; a2 ¼
2� 3d2

r

8dr � 24d3
r

: ð37a;b; cÞ

Upon considering the first three terms of the Frobenius series,
the four boundary conditions at v = e are obtained as

wjf¼1�e ¼ a0eþ a1e2 þ a2e3;

@w
@f

				
f¼1�e

¼ �a0 � 2a1e� 3a2e2;

@2w

@f2

					
f¼1�e

¼ 2a1 þ 6a2e;

@3w

@f3

					
f¼1�e

¼ �6a2:

ð38a;b; c;dÞ

Fig. 2 shows the comparison between the shape factor w
obtained by numerically integrating (34a,b,c) with (38a,b,c,d) and
the zeroth order approximation solution by Lyle et al. (2005) for
Fig. 2. Shape factor w as a function of the scaled similarity variable f for a = 3 and
dr = 0.5, 1, 5.
a = 3 and three different values of dr. For dr < 1 the first-order solu-
tion yields lower values of the shape factor than the zeroth order
solution, and does not exhibit an asymptote in the origin. Once
the shape function w and prefactor gN are known, dimensionless
and dimensional expressions of the current extension and profile
are derived via (32) and (33).

3.2. Numerical solution

For a – 3, numerical integration of (24)–(26) is required. To
overcome the problems due to the changing boundary RN, the
domain [0, RN] is mapped onto [0,1] by introducing the transfor-
mation H(R, T) ? H(y(R, T), T), with y = R/RN(T), resulting in the fol-
lowing equations

@H
@T
¼

_RN

RN
y
@H
@y
þ 1

R2
N

1
y
@

@y
yH

@H
@y
� 1

6R2
N

H3 @
2H
@y2

"

þ 1
6R2

N

H3

y
@H
@y
� 1

6R2
N

yH3 @
3H
@y3

#
; ð39Þ

2pR2
N

Z 1

0
yHdy ¼ Ta; ð40Þ

where the dot indicates the time derivative, while the boundary
condition given by (26) becomes

Hð1; TÞ ¼ 0: ð41Þ

A second-order, centred differences scheme was used for the
spatial derivatives and a Crank-Nicolson implicit algorithm for
the time derivatives. Some of the coefficients in Eq. (39) are singu-
lar at y = 1; in this case the asymptotic expression

H � RN
_RNð1� yÞ þ

RN
_RN

_R2
N � 2


 �
6 _R2

N � 3

 � ð1� yÞ3 ð42Þ

was used. The non-linear system of equations to be solved at each
time step was approached through a Levenberg–Marquardt algo-
rithm, imposing the flux near the origin as

lim
y!0

2pyH
@H
@y

� �
¼ �aT a�1: ð43Þ

The speed of the current front was calculated via the difference
of the positions of the leading edge at two subsequent time steps.
The accuracy and consistency of the algorithm was tested compar-
ing the numerical results with the theoretical self-similar solution
for a = 3. The scheme was found to converge to four significant fig-
ures employing 100 grid points and time steps initially equal to
10�3; the numerical solution was independent of further refine-
ment of grid spacing and time-step size. Noteworthy, for increasing
RN the terms of the first order correction become negligible with
respect to the other terms, and the zeroth order solution is suffi-
cient to describe the flow correctly.

The dimensionless horizontal and vertical velocities given by
(27a,b) are plotted in Fig. 3 for a = 1, two values of dimensionless
time T = 0.5, 1.0 and several values of the rescaled similarity vari-
able f. It is seen that both velocities decrease with increasing val-
ues of time and similarity variable; the vertical velocity is a small
fraction of the horizontal velocity except for f < 0.4 and at early
times. At the front end the vertical component is null and the hor-
izontal velocity equals the front end velocity.

4. Experimental observations and uncertainty analysis

The theoretical model was tested against laboratory experi-
ments in which a constant (a = 1.0) or time increasing flux
(a = 1.5) of pure glycerol, or of a mixture of glycerol and water,



Fig. 3. Dimensionless horizontal and vertical velocities U, W profiles for a = 1 and different values of similarity variable f; upper panels: time T = 0.5; lower panels: time
T = 1.0.

Fig. 4. (a) Sketch of the experimental apparatus, including the tank, the pump and the cameras to acquire the lateral and the bottom profile of the intruding current. (b) A
snapshot and (c) a plane bottom view of the intruding current for test #16.
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was released in a porous medium made of uniform glass beads and
initially saturated with air. The experiments were described in
detail in Longo et al. (2013) and are briefly summarised here.

The experimental apparatus and the devices employed are
shown in Fig. 4. The experiments were performed in a square glass
tank 25 	 25	25 cm3 filled with glass beads with diameter
d = 3 mm. The intruding fluid was injected with a syringe pump
Teledyne ISCO 260D, with an accuracy of 0.5%, controllable with
an analogue electric signal in order to vary the flow rate, if
requested. The fluid was injected through a 1-mm internal diame-
ter tube inserted in a cylindrically shaped injection volume, or
‘well’, located in a corner of the tank and having permeable walls
constructed with brass net. The lateral profile of the current was
recorded by a video camera (1920 	 1080 pixels) at 25 frames
per second; a photo camera (3456 	 2304 pixels) was used to
record the radial spreading of the current from the bottom. Several
algorithms were used to process the images in order to obtain a
planar, undistorted and calibrated image and to detect the bound-
ary between the intruding current (darkened through a modest
addition of ink) and the ambient fluid (air). The overall uncertainty
in detecting the boundary is equal to ±1 mm. The data representing
the front end position and the profile of the intruding current were
averaged in space (over 10 glass beads diameters) and then under
sampled with a step of one bead diameter. The permeability of the
porous medium was evaluated from the porosity / of the medium
and the diameter d of the glass beads using the Kozeny-Carman
equation k = /3d2/[180(1 � /)2].
In order to assess the accuracy of the theoretical model in repro-
ducing the experimental results, it is necessary to include in the
computations the effect of the uncertainties in the parameters. In
the Appendix, we describe how the sensitivity of the model to
parameter uncertainties is evaluated, and provide a synthetic
example assuming a fictitious coefficient of variation equal to 1%
for each variable. Here, we discuss the actual values of the uncer-
tainties affecting the key problem parameters, i.e. l, Dq, /, d and
Qd, in the present set of experiments.

The numerical value of the dynamic viscosity is affected by the
uncertainties in the rheometer and in the linear regression of the
experimental data of measured shear stress and shear rate; as a
consequence, the standard deviation of l can be assumed for our
test to be equal to 3.5% of the average value. Uncertainties in mea-
surements of density difference Dq and total flow rate Qd are spe-
cific to devices adopted in our experiments and, on the base of
their characteristics and of the manufacturer’s specifications, a rel-
ative error of ±1% for Dq, and ±0.5% for Qd is considered. The man-
ufacturer’s specifications for the glass beads indicate a tolerance of
5% on the nominal diameter, which is assumed as the value of the
standard deviation of d. Not many indications can be extracted
from literature on the variability of porosity / for packs of homo-
geneous glass beads. Aste et al. (2004) indicate experimental val-
ues of porosity for uniform glass beads with d = 1.0 ± 0.05 mm
and d = 1.59 ± 0.05 mm in the range 0.36–0.41 with a normal dis-
tribution and a standard deviation of 1.5%. The experimental
distribution of the porosity shown by Bloom et al., 2009 allows



Table 1
Parameter values for three tests from Longo et al. (2013). The uncertainty is expressed as one standard deviation.

Test # Qd (ml/s) a Dq (kg m�3) l (Pa s) d (mm) /

16 4.0 ± 0.5% 1.0 1250 ± 1% 0.58 ± 3.5% 3.0 ± 5% 0.38 ± 1%
17 4.0 ± 0.5% 1.0 1145 ± 1% 0.012 ± 3.5% 3.0 ± 5% 0.38 ± 1%
18 0.06 t1/2 ± 0.5% 1.5 1241 ± 1% 0.26 ± 3.5% 3.0 ± 5% 0.38 ± 1%

Fig. 5. The height of the gravity current as a function of radial coordinate, (a) zero order solution, (b) first order solution. (c) Residuals for the zero order solution and (d) for
the first order solution. The dashed lines are the 95% confidence limits, the error bar indicates the uncertainty at 95% level of confidence. Results for test #16,
l = 0.58 ± 3.5% Pa s, Dq = 1250 ± 1% kg/m3, Qd = 4.0 ± 0.5% ml/s, a = 1.0, d = 3.0 ± 5% mm, / = 0.38 ± 1%. The values of the parameters indicate the estimate of the average ± one
standard deviation.

Fig. 6. Contributions to the coefficient of variation (CV) of the height of the current.
Results for test #16, l = 0.58 ± 3.5% Pa s, Dq = 1250 ± 1% kg/m3, Qd = 4.0 ± 0.5% ml/s,
a = 1.0, d = 3.0 ± 5% mm, / = 0.38 ± 1%.
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to infer a standard deviation of less than 1%. Hence in the present
analysis we assume a standard deviation of porosity equal to 1%.

Table 1 lists the input values for the three tests of interest in
Longo et al. (2013), and the associated uncertainty.

Panels (a) and (b) of Fig. 5 show the comparison between the
two models (the zeroth and the first order) and the experimental
profile in test #16 at different times. The theoretical profile is
determined by assuming the nominal mean values of the parame-
ters. The improvement of the first order correction over the zeroth
order solution in interpreting experimental results is appreciable
approximately up to one third of the current length, and is evident
near the origin, where the refined solution does not result in an
asymptotic profile as the zeroth order one.

Panels (c) and (d) of the same Figure show the residuals of the
experimental data for test #16 and the 95% confidence limits for
the zeroth order solution and for the first order solution, assuming
that the uncertainties are those reported in Table 1. The residuals
with respect to the zeroth order solution are included in the confi-
dence band except near the origin, whereas the residuals with
respect to the first order solution lie practically always within
the confidence limits.

Fig. 6 shows the contribution to the coefficient of variation (CV)
of the current height for test#16 in Longo et al. (2013) due to the
five uncertain parameters. The dominant contribution is due to
the diameter d, with a significant contribution coming also from
the porosity /; the other parameters are less important. The over-
all profile of the total CV is qualitatively similar to that derived for
the illustrative example shown in Fig. A1 in the Appendix, with
fictitious standard deviations as opposed to real ones, in that at
two-thirds of the total current length the relative uncertainty
reaches a minimum and then increases asymptotically near the
front end. A more extended comparison with the experimental
results for tests #17 and #18 is shown in the Supplementary
Material, available online. Results of the comparison for the profile



Table 2
Parameter values for the experiments described in Lyle et al. (2005). The reduced gravity listed in the original paper has been converted by assuming that the mass density of the
ambient fluid is q = 1000 kg m�3. The uncertainty is considered equal to a single standard deviation. Data on the uncertainties of the parameters are not reported in the original
paper and have been kindly communicated by Hallworth (2013) (personal communication).

Expt 1 2 3 4 5 6

Dq (kg m�3) 10.2 ± 0.3 20.4 ± 0.3 40.8 ± 0.3 81.6 ± 0.3 40.8 ± 0.3 40.8 ± 0.3
Qd (ml s�1) 36.8 ± 0.2 34.4 ± 0.2 34.4 ± 0.2 39.2 ± 0.2 9.2 ± 0.2 72.4 ± 0.2

Fig. 7. The height of the gravity current as a function of radial coordinate. Dashed
line: zeroth order solution. Bold line: first order solution. Symbols: experiment 3
from Lyle et al., 2005, l = 1.2 	 10�3 Pa s, Dq = 40 kg/m3, Qd = 34.4 ml/s, a = 1.0,
/ = 0.37, k = 6.8 	 10�9 m2.
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are qualitatively similar, except that the fitting is better and confi-
dence intervals are narrower for test #17.

Finally, a comparison between the theoretical solution and
experimental results was carried out also in terms of the radius
of the current, as described in detail in the Appendix. When com-
pared to the zeroth order result, the first order solution yields a
slightly larger spreading rate at early times, converging to the zer-
oth order solution at late times. It is seen that adoption of either
solution is immaterial in interpreting experimental results in terms
of the radius of propagation.
5. Comparison of theoretical model with experimental results
by Lyle et al. (2005)

Lyle et al. (2005) performed nine experiments with radial gravity
currents of Newtonian fluid by using an apparatus similar to that
employed in our experiments (Longo et al., 2013). Six of the experi-
ments are of interest for the present analysis; the parameter values
for these tests are listed in Table 2. In their experiments, the reduced
gravity is very low since the intruding fluid (salt water mixtures with
different absolute salinity) was injected in a porous medium filled
with fresh water. The porous medium consisted of 3.0 mm diameter
glass ballotini, with a tolerance communicated by the manufacturer
equal to�0.15, +0.30 mm. The viscosity of the intruding fluid is esti-
mated from literature data (Sharqawy et al., 2010), and is assumed
equal to l = 1.2 � 10�3 ± 1% Pa s for all salt water mixtures at
H = 20 �C (the absolute salinity of the mixture has a minor effect
on the viscosity). The porosity is taken to be / = 0.37 ± 1%.

Fig. 7 shows the current profile as a function of the distance
from the origin at three different times for Expt 3. The dashed line
is the zeroth order solution, the bold line the first order solution.
The data collapse on the zeroth order solution is satisfactory far
from the origin and fails near the origin, due to the boundary effect
of the injection well. On the contrary, the first order solution agrees
with the experiments in the whole spatial range.
Additional comparisons are included in the Supplementary
Material available online, describing results for the remaining
experiments by Lyle et al. (2005). These demonstrate again the nar-
rowing of confidence limits associated with the first order
correction.
6. Conclusions

Our work leads to the following major conclusions:

� An improved solution for spreading of axisymmetric gravity
currents in uniform porous media was derived adopting a Ray-
leigh expansion of the Darcy velocity potential at first order. The
new formulation allows for nonzero vertical velocities, effec-
tively removing the Dupuit–Forchheimer assumption, and elim-
inates the asymptote of the shape factor present in the origin at
zeroth order. The solution is self-similar for a = 3.

� An extensive comparison of the zeroth and first order theoreti-
cal models with two sets of experiments was carried out,
together with a statistical analysis of the uncertainties affecting
model results and experimental data.

� Profiles obtained with the first order solution have a finite
height in the origin and depend almost linearly on the distance
from the origin, as experimentally detected by Lyle et al. (2005).
The refined model exhibits a much better agreement with
experimental data than the zeroth order model near the origin,
where the free surface curvature is relevant and the vertical
velocity of the interstitial fluid is non-negligible. Only experi-
mental profiles at early times, still reminiscent for a large part
of their extension of the boundary effects induced by the injec-
tion, do not match the theoretical model. The prediction of the
profile is consistently accurate and with a narrow band of
confidence.

� The effect of the correction is much less important for the radius
of propagation, which in the first order solution always
increases, albeit modestly, with respect to the zeroth order
solution. This is due to the lesser volume stored in the porous
medium near the origin, which in turn is compensated by a lar-
ger volume stored near the front, in order to balance the
injected mass. However, due to the radial geometry of the sys-
tem, a limited increase in the radius of propagation is sufficient
to induce a relevant increment in the stored volume of liquid.
Experimental results for the current radius of propagation com-
pare well with either model, since the differences between
models are of the same order of the associated uncertainties.

� In our experiments the contribution to the coefficient of varia-
tion (CV) of the current profile due to uncertainty in model
parameters is largest for the diameter d, with a significant con-
tribution coming also from the porosity /; the other parameters
are less important. In general the sensitivity analysis indicates
that porosity (directly affecting, with the diameter d, the intrin-
sic permeability) is the main source of uncertainty hence, in
controlled experiments, a great deal of attention should be paid
in reproducing the porous medium with uniform known
porosity.



Fig. A1. Contributions to the coefficient of variation (CV) of the height of the
current. It is assumed that the CV of the parameters is 1%. Results for test #16,
l = 0.58 ± 1% Pa s, Dq = 1250 ± 1% kg/m3, Qd = 4.0 ± 1% ml/s, a = 1.0, d = 3.0 ± 1%
mm, / = 0.38 ± 1%.
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Appendix A

A.1. Model sensitivity analysis

This Appendix illustrates the general procedure used to conduct
the model sensitivity analysis to uncertainties in the parameters.
The output of the model (based on the zero order solution) is rep-
resented by the profile of the intruding current, a generic function f
of time, radial coordinate and five additional parameters:

h ¼ f ðr; t;/;d;Q d;Dq;lÞ; ð25Þ

assuming that gravity is fixed and invariable, the flow rate is con-
stant, and a is exempt from uncertainty. Considering the parameters
to be independent random variables and adopting the usual rules for
error propagation (developing in Taylor series and neglecting the
second derivatives, e.g. Navidi, 2006), the standard deviation of h is

rh ¼ Fðr; t; �/; �d;Qd;Dq; �l;r/;rd;rQd
;rDq;rlÞ; ð25Þ

where F is another generic function, the over bar denotes the mean
value and r stands for standard deviation. Note that we do not need
to assume a specific probability distribution of the random param-
eters and only the estimates of their mean value and standard devi-
ation are required. To have an accurate estimation by considering
only the first term of the Taylor series, it is also necessary that
the standard deviation values are small with respect to the mean
values of the variables.

In order to illustrate the typical output of an uncertainty analy-
sis, Fig. A1 shows the contribution to the total standard deviation
of the height of the intruding current due to the uncertainty of
the fluid viscosity, the discharge, the diameter of glass beads, the
density and the porosity in test #16, assuming the coefficient of
variation to be equal to 1% for each variable. The higher contribu-
tion is due to the porosity, which is dominant at least till a distance
equal to 50% of the front end position. The second most important
contribution comes from the discharge. At approximately f = 0.7
the relative variance of the profile height has a minimum, after
which it grows asymptotically near the front end. The fluid viscos-
ity and the density give an identical, and lowest, contribution.
Appendix B. Supplementary material

Supplementary associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.jhydrol.2014.07.003.
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