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In hydrofracturing, we model backflow of a non-Newtonian fluid in a single flat-walled fracture of planar geometry and
support our conceptualization with laboratory experiments. We consider a power-law fluid, a spatially homogeneous
fracture aperture, and its variation in time depending on the internal fluid pressure and the elastic relaxation of the
walls. The relationship between the latter quantities may be linear, akin to a Winkler soil, or nonlinear, due to the
progressive softening or stiffening of the boundary associated with the properties of the surrounding rock. The result
is an integro-differential problem that generally admits a closed-form solution, albeit implicit for some quantities. In
particular, a comparison is conducted between the drainage time in the present configuration and point drainage in
radial geometry. The approach is generalized by introducing leak-off, i.e. a loss of fluid at the fracture boundaries that
accelerates the fracture closure, when compared to the no leak-off case. To validate the theoretical results, 14 experi-
ments are conducted with an ad-hoc replica of a rectangular fracture of aspect ratio 2.5-2.7, with a maximum height of
≈ 2 mm; the elastic reaction of the walls is due to o-rings, also sealing the fracture without adding friction disturbances.
Fluids with different rheology, both Newtonian and shear-thinning, are associated with different boundary conditions of
external pressure and overload. The match between theory and experiments is fairly good, with discrepancies of a few
percent essentially due to the approximations of the theoretical model, and, for shear-thinning fluids, to the simplified
constitutive equation.

I. INTRODUCTION

Backflow is a term used in the hydrofracturing jargon to
represent the third phase of the process following the injection
of i) the fracturing fluid and ii) of the proppant (see Sahai and
Moghanloo1 and bibliography therein for a recent review).
The first phase opens up new fractures, cracks and preferen-
tial pathways in the rock mass with a process that initiates at
the main well, or borehole, typically located at 1-2 km below
ground and having a sub-horizontal orientation; the second
phase props them open. At the beginning of the third phase,
the injection ceases and the downstream pressure gradient at-
tenuates and then reverses its direction; this causes part of the
fracturing fluid to flow back sequentially from matrix to frac-
tures, fractures to well bore, and finally from well bore to sur-
face, where the fluid is treated and re-used; the phenomenon
is commonly described as backflow. The unrecovered portion
of hydrofracturing fluid lost as formation leak off represents
an economic loss2 as well as a source of environmental pol-
lution: the latter key aspect is clearly summarized by Birdsell
et al.3. During the fourth and final phase, the product of the
reservoir under exploitation, typically oil, gas or heat for the
deepest reservoirs4, follows the backflow and invades the frac-
ture network, eventually reaching the borehole and initiating
the productive stage. Any residual fracturing fluid retained in
the fracture network or in the formation pore space, as well
as the presence of proppant within the fractures5, brings about

a)http://www2.unipr.it/~slongo/English_version/Sandro Longo.htm.
b)Author to whom correspondence should be addressed: vitto-
rio.difederico@unibo.it

a reduction of the fracture conductivity, impairing productiv-
ity and favouring the stagnation of the fracturing fluid in the
subsurface.

While a variety of models examine with varying realism
and at various scales (for a review see Britt6 and Detournay7)
the first phase of the hydrofracturing process, the details of
backflow were investigated to a lesser degree of attention.
In essence, it is seen that typically the reverse flow causes a
pressure reduction within the formation and the fracture net-
work upstream of the borehole; this in turn produces the re-
laxation of the walls, further squeezing the fracture and driv-
ing the fluid out. This phenomenon can be captured by nu-
merical models based on a detailed knowledge of the frac-
ture network8, possibly based on AI techniques (see Agwu et
al.9 for a review concerning similar fluids); or represented by
models of reduced complexity, characterized by a relatively
low number of parameters. This second category includes the
model of Lai et al.10 for radial crack propagation and resulting
backflow, the seminal work of Dana et al.11, describing the
same phenomena in a fracture network built as a succession
of plane branches of increasing order, where at each order i
two fractures branch out from an order i−1 fracture, reminis-
cent of river networks12, and blood vessels or other biological
systems (see Abugattas et al.13 and references therein). The
model was later extended to include variability in the branch-
ing parameters at each order14. The effect of a bifurcation on
single and two-phase flow in a fracture surrounded by a porous
medium was investigated by Zhu et al.15. Quite surprisingly,
relatively few scientific works include non-Newtonian effects,
despite the fact that hydrofracturing fluids are rheologically
complex by definition. In the first place, they are often engi-
neered so that their viscosity varies over time, typically due to
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carefully planned chemical reactions within the fluid and/or
with the rock matrix16. This peculiar characteristic permits
the optimization of hydrofracturing operations: during the in-
jection phase, a high viscosity allows formation of a clearly
defined network of cracks without too much loss of fluid in
the surrounding matrix, while in the backflow phase a low vis-
cosity is desirable to minimize pressure losses and maximize
the fluid recovery. In principle, this does not necessarily im-
ply a non-Newtonian behaviour, characterized by a viscosity
dependent on the velocity vector, or equivalently, by a non-
linear relationship between the stress and the velocity defor-
mation tensors. In practice, however, the rheology of frac-
turing fluids is mostly non-Newtonian, as explained in detail
e.g. by Osiptov17: this is linked to the desirable character-
istics of non-Newtonian fluids, whose richness of descriptive
parameters allows achieving several engineering objectives at
the same time18.

The adoption of complex constitutive models more apt to
represent the rheology of the fracturing fluid has become
common19 in modelling all phases of the hydrofracturing pro-
cess. At the scale of an entire formation, or of a domain in-
cluding several formations, the approach is mostly numerical
and includes a detailed description of the newly formed frac-
ture network20, interacting with the surrounding rock matrix
and the fractures possibly already existing in the formation21.
The rheological model adopted is usually power-law, the least
detailed model incorporating a nonlinear relationship between
stress and strain22. More detailed formulations, often based on
an analytical or semi-analytical approach, focus on a single
phase of the hydrofracturing process. In the injection phase,
the formation of a plane-strain fracture driven by a power-law
fluid is described by Adachi and Detournay23 and Garagash24,
and by Mikhailov et al.25 with the inclusion of leakoff;
anisotropy in the rock matrix was then incorporated in the
solution by Dontsov26, while Lakhtychkin et al.27 modelled
the fracture expansion under the action of two proppant-laden
immiscible power-law fluids. An alternative, numerical ap-
proach for the propagation phase was adopted by Perkovska28.
More realistic, and complex rheological models, such as trun-
cated power-law and Carreau, were only recently applied to
single fracture propagation29–31. Much less developed are
models for non-Newtonian backflow. To our knowledge, the
first was presented by Chiapponi et al.32, who modelled radi-
ally converging backflow of a non-Newtonian power-law fluid
towards a borehole in a single disk-shaped fracture, checking
their theoretical findings against laboratory experiments with
satisfactory results. Later, Ciriello et al.33 developed a similar
analysis for plane flow of a non-Newtonian fluid described by
the Ellis three-parameter model34,35. Here, we consider the
same plane geometry and develop novel closed-form expres-
sions for a power-law fluid, widely applied in porous and frac-
tured media flow36 with satisfactory results when the rheolog-
ical parameters in the measuring device are estimated at the
same shear rate range of the real phenomenon. We then verify
our theoretical result by means of two ad hoc built experimen-
tal devices, describing its structure and calibration, exploring
different types of wall reaction, and finding a good agreement
between experiments and theory.

L

x

z

h t( )
0

p = pe
¶

¶
p/

x
=

0

E

y

W

g
α

FIG. 1. Sketch of a smooth fracture with uniform aperture varying
over time and elastic wall behaving as a linear/nonlinear (λ = 1/ 6= 1)
foundation of assigned coefficient of subgrade reaction Ê of dimen-
sions [ML−1−λ T−2], reverting to a Winkler coefficient Ẽ of dimen-
sions [ML−2T−2] for λ = 1.

The manuscript is structured as follows. Section 2 includes
the formulation of the problem and the derivation of i) the
pressure field in the space/time and ii) the closure pattern of
the fracture over time. Section 3 illustrates the experimen-
tal set-up, the measurement techniques for the rheological be-
haviour of the investigated fluids, interpreted with the New-
tonian and power-law constitutive equations, and the exper-
imental results with associated uncertainty. Section 4 illus-
trates a generalization of the problem, including the effects of
leak-off from the fracture. Section 5 presents our conclusions
and perspectives for future work. Appendices A-C provide
additional details on the problem investigated.

II. POWER-LAW FLUID FLOW

A. Formulation

A fluid-filled, rigid rock fracture of length L, width W , time
variable aperture h(t) of starting value h0, and elastic walls is
initially (t = 0) subject to a no-flow condition at its end x = L
and to uniform initial pressure pe imposed by the value at its
outlet x = 0, connected with the main well or borehole (see
Figure 1). The backflow towards the borehole causes a pres-
sure reduction within the fracture that in turn produces the
relaxation of the walls, further squeezing the fracture. For a
given time, the pressure is p(x, t), while the fracture volume
and the outflowing discharge per unit width are Vf = Lh and
q = −dVf /dt = −L dh/dt. Hereinafter, the pressure within
the fracture is taken to include gravity effects (reduced or gen-
eralized pressure) caused by the inclination α of the fracture
with respect to the horizontal plane. Note that this assumption
can be adopted also for the radial geometry, adding general-
ity to the results of Chiapponi et al.32 without the need for
neglecting gravity effects.

The fracture aspect ratios are ε1 = L/W � 1 and ε2 =
h/L� 1, and the lubrication approximation holds. Hence,
the flow is one-dimensional in the x direction; this allows con-
centrating the relaxation of the fracture entirely in one of the
two walls, taken to be the upper one for pure convenience.
We further assume that the plane fracture under consideration
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FIG. 2. Bi-wing planar and symmetric fractures of dimensions L,
W and h and equal spacing l originating from a horizontal borehole;
here α = 90◦ as the fractures lie in the vertical plane.

belongs to a series of evenly distributed fractures of spacing
l with respect to a horizontal borehole or main well, as it is
most often the case in hydraulic fracturing (see Figure 2).

To represent in a general form the reaction of the wall we
adopt the formulation of Ciriello et al.33, allowing for gener-
ality the Young modulus E of the rock wall to be a function of
the strain rate, according to the power-law relationship

E = E0

(
h
l

)λ−1

, (1)

where E0 is a reference value of the Young modulus of dimen-
sions [ML−1T−2] and λ a non-negative constant governing the
type of wall reaction: linear for λ = 1, sub-linear or supra-
linear for 0 < λ < 1 or λ > 1 respectively. It is worth noting
that λ 6= 1 also represents possible experimental constraints.
Under a Winkler conceptualization of subgrade springs illus-
trated in Figure 1, the rigid wall reacts to the upward fluid
pressure with a downward pressure proportional to the aper-
ture given by r(t) = Ẽh where Ẽ is the coefficient of subgrade
reaction of dimensions [ML−2T−2]. For a thin elastic layer,
this coefficient is given by the ratio between the Young modu-
lus of the layer’s material E [ML−1T−2] and its thickness l37,
i.e.

Ẽ = E/l, (2)

where l in this context is identified with the fracture spacing32.
The actual validity, albeit approximate, of eq. (2) is condi-
tioned on l/L < 1, a requirement often respected in artificial
fracture networks produced by fracking (see Ciriello et al.33

and references therein).

The wall equilibrium, written per unit width, then requires∫ L

0
p(x, t)dx = r(t)L = ẼLh(t), (3)

or equivalently using eqs. (1)-(2)∫ L

0
p(x, t)dx = ÊLhλ (t), (4)

where Ê = E0l−λ of dimensions [ML−1−λ T−2] is a coeffi-
cient of subgrade reaction under the assumption of nonlinear
wall reaction and evenly spaced fractures, and reverts to the
physical meaning and dimensions of a Winkler subgrade co-
efficient if λ = 1. Note that eq. (4) stands by itself in the case
of a single fracture when the spacing l is not defined and there
is no need of eqs. (1), (2) and (3). The wall equilibrium is
further generalized by adding a constant force per unit width,
defined as overload f0, on the right-hand side of (4), typically
opposing the fracture aperture and associated for instance to
a residual state of stress within the rock wall generated by its
load history. Eq. (4) then becomes,∫ L

0
p(x, t)dx = ÊLhλ (t)+ f0, (5)

completing the schematization of the fluid-wall interaction.
Turning now our attention to the flow, inertial effects are

negligible, the regime is viscous, and the fluid has a power-law
rheology, described in simple shear flow by the constitutive
equation

τzx =−µ̃|∂u/∂ z|n−1
∂u/∂ z, (6)

with τzx shear stress, u velocity, µ̃ consistency index and n
flow behaviour index; for n = 1 the fluid is Newtonian, for
n < 1 shear-thinning, for n > 1 shear-thickening. Under the
previous assumptions, the pressure distribution is hydrostatic
and the velocity profile at any cross-section x is

u(x,z, t) =− n
2(n+1)/n(n+1)

1
µ̃1/n

∣∣∣∣∂ p
∂x

∣∣∣∣1/n−1

× ∂ p
∂x

(
h(1+n)/n−|2z−h|(1+n)/n

)
. (7)

Shear-thinning fluids (n < 1) are most common in practical
applications and will be considered henceforth. The wall ve-
locity ww perpendicular to the wall itself is initially zero at the
start of the relaxation phenomenon, i.e.

ww(0) = 0, (8)

and is given at the generic time t by

ww(h) =
∂h
∂ t

=
dh(t)

dt
, (9)

the last equality holding as the wall is rigid. Further, ww is
related to the fluid velocity u in the x direction by the principle
of continuity

∂ww

∂ z
+

∂u
∂x

= 0. (10)
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Substituting eqs. (7) and (9) in eq. (10) and integrating per-
pendicular to the wall between z = 0 and z = h(t) with the
boundary conditions (8)-(9) yields

dh(t)
dt

=
1

2(1+n)/n(2n+1)µ̃1/n
h(t)(2n+1)/n

×
∣∣∣∣∂ p(x, t)

∂x

∣∣∣∣1/n−1
∂ 2 p(x, t)

∂x2 . (11)

Referring now again to the geometry described by Figure
2, showing several bi-wing planar fractures (the schemes for
single or multiple fractures do not differ except for the quan-
tities depending on the spacing l), it is noted that consistently
with the assumption L�W the flow is uniform along most
of the fracture half-length L and may be approximately de-
scribed as planar except in the vicinity the well. Neglecting
the convergence of flow lines therein allows simplifying the
boundary condition at the fracture outflow, so that the initial
and boundary conditions to eqs. (5) and (11) read

h(0, t) = h0, p(0, t) = pe,
∂ p(x, t)

∂x
(L, t) = 0, (12)

where i) h0 is the initial fracture aperture; ii) pe is the pressure
at the fracture outflow, taken to be equal to borehole pressure
along the entire fracture height W ; iii) the condition at the
fracture inflow, representing the upstream network of fractures
created by the injection process, is identified as a zero pressure
gradient, the least impacting condition on the pressure within
the fracture.

B. Solution

The governing equations (5) and (11), and the initial and
boundary conditions (12) can be written in dimensionless
form respectively as

1
H(T )(2n+1)/n

dH(T )
dT

=

∣∣∣∣∂P(X ,T )
∂X

∣∣∣∣(1−n)/n
∂ 2P(X ,T )

∂X2 , (13)

∫ 1

0
P(X ,T )dX = Hλ (T )−Pe +F0, (14)

H(X ,0) = 1, P(0,T ) = 0,
∂P(X ,T )

∂X
(1,T ) = 0, (15)

by using the dimensionless quantities

X = x/L, H = h/h0, T = t/tc, P = (p− pe)/pc,

Pe = pe/pc, F0 = f0/(Lpc), Q = (qtc)/(Lh0). (16)

In eq. (16), the time and pressure scales tc and pc are defined
as

tc =
(

µ̃

Ê

)1/n (2L)(n+1)/n(2n+1)

h(n+λ+1)/n
0

, pc = Êhλ
0 . (17)
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FIG. 3. Dimensionless fracture aperture versus dimensionless time
for Pe−F0 = 0, and n = 1,0.7,0.4,0.3. The cases λ = 0.8,1,1.2 are
represented by dashed, continuous and dotted lines for n = 0.7 and
n = 0.3 to illustrate the dependence upon λ .

To solve the problem an auxiliary function is defined as

G(T ) =
1

H(T )(2n+1)/n

dH(T )
dT

. (18)

Together with the assumption of backflow, implying ∂P/∂x >
0, eq. (18) allows integrating eq. (13) with the boundary con-
ditions in eq. (15), obtaining the pressure field

P(X ,T ) =
[−G(T )]n

nn(n+1)
[
1− (1−X)n+1] . (19)

Substituting eqs. (18) and (19) into eq. (14) gives

dH
dT

+n(n+2)1/nH(2n+1)/n
(

Hλ −Pe +F0

)1/n
= 0, (20)

subject to the initial condition in eq. (15).
For Pe−F0 = 0 eq. (20) admits the following closed-form

solution

H(T ) =
[
1+(1+n+λ )(n+2)1/nT

]−n/(1+n+λ )
, (21)

and consequently the pressure is given by

P(X ,H(T )) =
n+2
n+1

Hλ (T )
[
1− (1−X)n+1] . (22)

For n = 1 and λ = 1, equations (21) and (22) reduce to
the expressions derived by Dana et al.11 for a Newtonian fluid
and λ = 1 (a linearly elastic wall). Appendix A reports their
late-time (T � 1) approximations. The dimensionless frac-
ture aperture is shown versus time in Figure 3, showing the
late-time T−n/(n+λ+1) scaling; the smaller the flow behaviour
index n, the larger the dimensionless aperture. For smaller λ
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for Pe−F0 = 0.1 and n = 1,0.7,0.4,0.3. The cases λ = 0.8,1,1.2
are represented by dashed, continuous and dotted lines for n = 0.7
and n = 0.3 to illustrate the dependence upon λ .

values, the fracture aperture decreases faster with time as the
wall reacts less.

For Pe−F0 ≥ 0, the function H(T ) is obtained implicitly as

T =
1

(n+2)
1
n (1+n+λ )

[
1

ζ (1+n+λ )/n

× 2F1

(
1
n
,

1+n+λ

nλ
;
(1+λ )(n+1)

nλ
;

Pe−F0

ζ λ

)]∣∣∣∣H
1
, (23)

where ζ is a dummy variable, 2F1 (a,b;c;ζ ) is the hypergeo-
metric function of parameters a,b,c and argument ζ and the
linear transformation (9.132.2) in Gradshteyn and Ryzhik38

has been used. Early- and late-time approximation of the gen-
eral equation (23) are reported in Appendix B. For the special
case Pe−F0 = 0, eq. (23) becomes eq. (21); for n = 1 and
λ = 1, it reduces to equation (2.18) in Dana et al.11 via the
identity in Appendix C. When a linear wall reaction (λ = 1)
is coupled with a shear-thinning fluid (n < 1), eqs. (21) and
(23) reduce to

H(T ) =
[
1+(n+2)(n+1)/nT

]−n/(n+2)
, (24)

T =
1

(n+2)
n+1

n

×
[

1
ζ (n+2)/n 2F1

(
1
n
,

n+2
n

;
2(n+1)

n
;

Pe−F0

ζ

)]∣∣∣∣H
1
. (25)

The behaviour of the aperture-time function is depicted in
Figure 4 for different values of n and λ and the case Pe −
F0 = 0.1. The aperture tends for large times to (Pe−F0)

1/λ ,
and reaches this asymptote later for as the fluid becomes more
shear-thinning; the asymptote value is larger when the wall is
more rigid (larger λ ).

The pressure field for the general case Pe−F0 > 0 is
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FIG. 5. Pressure field for Pe−F0 = 0.1, n= 1,0.7,0.4,0.3 and λ = 1.

P(X ,H(T )) =
n+2
n+1

Hλ (T )
[

1− Pe−F0

Hλ (T )

][
1− (1−X)n+1] .

(26)
Upon plotting the spatial trend of dimensionless pressure

within the fracture at different times (Figure 5), it is observed
that the pressure increases along the fracture and decreases
over time; this decrease markedly depends on the value of n
and is slower for shear-thinning fluids, more so at late times,
while at early times the pressure difference among different
fluids is modest.

C. Drainage analysis

A comparison between the efficiency of the linear and point
drainage mechanisms39, corresponding to the plane or radial
geometry, may be readily obtained by confronting the corre-
sponding solutions for zero outlet pressure and overload, the
present eq. (21) and eq. (17) of Chiapponi et al.32. These two
have the general format

H(T ) =
1

[1+δ (n,λ )T ]n/(1+n+λ )
, (27)

where the dependence on the drainage mechanism can be en-
capsulated in a decay coefficient δ (n,λ ) for the fracture aper-
ture, with 1/δ akin to a dimensionless timescale of decay.
In dimensionless terms, a larger decay coefficient implies a
smaller aperture and residual pressure at any given time and
location, hence a more efficient drainage mechanism. Fig-
ure 6 depicts the behaviour of δ (n,λ ), showing that the decay
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linear (continuous) and stiffening (dashed) fracture wall.

rate: (i) decreases for increasing n, as the fluid behaviour ap-
proaches the Newtonian one, (ii) increases for increasing λ ,
as the fracture wall reacts more to any given pressure within
the fracture, (iii) is more sensitive to the values of n and λ

for small values of these two parameters, and (iv) is smaller
for point than for linear drainage for shear-thinning fluids
with n < n0 / 0.63. These results indicate that, above this
threshold, the point drainage is less effective than the linear
drainage. This is readily explained, as the average shear stress
is homogeneous for the planar geometry with linear drainage,
while it increases towards the origin for the radial geometry
plate with point drainage. As the draining fluid becomes more
shear-thinning, this effect is less pronounced than for Newto-
nian fluids, and eventually disappears for very shear-thinning
fluids. It must be stressed that these conclusions refer exclu-
sively to dimensionless results.

The outflowing discharge can be derived in dimensionless
form and in analogy to Chiapponi et al.32 as

Q = n(n+2)
1
n H

2n+1
n

(
Hλ −Pe +F0

) 1
n
. (28)

Analogously, the drainage time TY required to drain Y % of
the total fracture volume (0−100% in dimensionless form) is
equal to

TY =
1

(1+n+λ )(n+2)1/n

[(
100

100−Y

)(1+n+λ )/n

−1

]
,

(29)
for Pe−F0 = 0, while for Pe−F0 ≥ 0 it is given by

TY =
1

(1+n+λ )(n+2)1/n

[
1

ζ (1+n+λ )/n

× 2F1

(
1
n
,

1+n+λ

nλ
;
(1+λ )(n+1)

nλ
;

Pe−F0

ζ λ

)]∣∣∣∣b
1
, (30)

with

b = (Pe−F0)
1/λ +

100−Y
100

[
1− (Pe−F0)

1/λ

]
. (31)
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Figure 7a shows the dimensionless discharge out of the
fracture for different values of n, zero outlet pressure Pe and
overload F0. The curves almost collapse, and according to
eq. (28) exhibit an asymptotic scaling with time of exponent
−(2n+λ +1)/(n+λ +1); special values are−2(n+1)/(n+
2) for λ = 1,−(3+λ )/(2+λ ) for n = 1, and−4/3 for n = 1
and λ = 1. Figure 7b depicts T50 and T90, the times required to
drain 50% and 90% of the total fracture volume, for different
values of n and Pe with F0 = 0. Results are extremely sen-
sitive to the values of Pe and n; the time needed to achieve
a certain recovery decreases as the shear-thinning fluid ap-
proaches Newtonian behaviour and drops by orders of mag-
nitude as Pe increases. This may seem counterintuitive (the
fracture drains against a non-zero outer pressure) but it hap-
pens as for Pe > 0 the fracture does not shut down completely,
as opposed to the case Pe = 0. Note that in log-linear scale,
the curves are practically indistinguishable for a 50% recov-
ery, differ conspicuously for a 90% recovery, and even more
so for a 99% recovery (not shown). For a softening model of
the Winckler soil (λ < 1) there is a reduction of the drainage
time with respect to the values computed for λ = 1, and the
differences are greater the more the fluid is shear-thinning; the
opposite is true for a stiffening model (not shown).
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III. EXPERIMENTS

The theory was validated via a set of experiments run in the
Hydraulics Laboratory of Parma University. The experimental
setup is described in section 3.1, uncertainty quantification in
3.2, and the actual experimental results in 3.3.

A. Experimental setup

In order to verify the theoretical model and to highlight the
possible limitations of the scheme, two experimental devices
were built (hereinafter small and large apparata), both consist-
ing of a rigid rectangular flat slat of aluminium alloy, which
moves vertically in a sealed cylinder of the same material. The
parts were manufactured via a numerically controlled machine
(CNC) to guarantee the flatness of the surfaces and therefore
the uniformity of the thickness of the rectangular gap.

The seal is created using a neoprene o-ring with a diame-
ter of 6-8 mm, with seats that allow the elastic deformation
of the o-ring in a range generally less than 2 mm. The elas-
tic reaction of the fracture wall, a Winkler soil for λ = 1, is
represented by the elastic reaction of the o-ring. The elastic
reaction function is taken to be a power-law according to eq.
(1), and is experimentally evaluated by injecting pressurized
air, with pressure measured by a Druck calibrator DPI601 20
kPa full-scale, and by measuring the vertical position of the
piston with 3 dial gauges with a resolution of 1/100 mm: for
different values of the air pressure, different vertical positions
of the piston were measured. The general interpolating func-
tion is p = pt + Êhλ , where pt is a threshold pressure due to
pre- compression of the o-rings. The effect of this threshold
pressure is equivalent to an overweight f0.

The small apparatus shown in figure 8 has an internal length
of about 2L= 45 cm and a width of about B= 9cm. In order to
ensure uniformity of the gap during testing, the outlet is in the
middle of the cylinder, with the two draining trunks of about
L= 20 cm length discharging symmetrically. Two neoprene o-
rings are installed, one between the upper surface of the piston
and the closing frame of the cylinder, the other between the
lower surface of the piston and the cylinder (bottom neoprene
o-ring), with elastic reactions of the o-rings in opposition. The
weight of the piston is 20.20 N. A pressure tap at the bottom
of the cylinder allows measurement of the initial pressure.

The large experimental apparatus, shown in figure 9, is
missing the bottom neoprene o-ring, has an internal length of
about 2L = 80 cm and a width of about B = 15cm. For this
device, too, the outlet is in the centreline. In this apparatus,
the o-ring is installed between the top surface of the piston
and a closing frame of the cylinder (in the same configuration
adopted for the first experimental device), with a free gap be-
tween the side walls of the piston and the cylinder of about
7/10 mm. The weight of the piston is 78.35 N. This large
device has been realized both to check the existence of scale
effects and to check the effects of the gap between the lateral
surfaces of the piston and the cylinder; this gap could to some
extent distort the main flow and could facilitate fluid drainage.

Prior to testing, the elastic reaction of the o-ring was cali-
brated, with a typical result shown in figure 10ab; the single
o-ring in the large experimental apparatus shows a stiffening
response, while the double o-ring in the small experimental
apparatus exhibits an almost linear response.

To start an experiment, the inlet pipe was connected to a
tank filled with the fluid and positioned at a variable height
with respect to the bottom of the cylinder. The purge valves
were initially opened to eliminate air bubbles in the fracture
and in the hydraulic circuit. Then the valves were closed, and
the piston slowly began to move upwards. After reaching the
desired position of the piston, the inlet pipe was closed and the
outlet pipe was opened rapidly to simulate backflow, with the
piston moving downwards. The position in time of the piston
was recorded with a video camera at 25 frames per second.
The video frames were post-processed to extract the reading
of the three dial gauges. For experiments where the external
pressure was non-zero, the tank was quickly lowered.

The Newtonian fluids adopted in the experiments were
obtained by mixing glycerol and water in different propor-
tions to obtain different viscosities; the shear-thinning non-
Newtonian fluids were obtained by adding Xanthan Gum to
the above mixture. The rheological parameters were obtained
via a parallel-plate rheometer by Anton Paar (dynamic shear
rheometer Physica MCR 101), kept at the same temperature
of the experiments. Fluid density was measured with a pyc-
nometer.

B. Uncertainty quantification

The uncertainties of the experiments derive from the mea-
surement procedures and from the parameters’ estimation.
The dials indicators have an absolute uncertainty assumed
equal to the resolution of 1/100 mm; the absolute uncertainty
in time measuring equals half the time step between two sub-
sequent frames, 1/50 s. On the basis of the characteristics of
the rheometer and of rheometric data dispersion, we assume
a relative uncertainty in fluid behaviour index ∆n/n ≤ 4%
and in consistency index ∆ µ̃/µ̃ ≤ 6%. These uncertainties
have been minimized by interpolating experimental rheomet-
ric data within the same range of shear rate of the experiments,
see Longo et al.36, yet are larger than the discrepancies typ-
ically associated to the adoption of a plate-plate geometry in
lieu of a cone-plate geometry. The range of shear rate is com-
puted considering that the maximum value at the wall is

γ̇w =

(
h

2µ̃

)1/n(dp
dx

)1/n

. (32)

The gap-averaged value is < γ̇ >= γ̇w[n/(n+ 1)], decays in
time and decreases with the distance from the outlet section.
Figure 11 shows the typical rheometric data for the shear-
thinning fluid adopted in the present experiments, with two
interpolating functions for two different ranges of the shear
rate, and figure 12 shows the gap-average shear rate during
Exp. 11.

The uncertainty in mass density measurement equals
1gcm−3, with ∆ρ/ρ ≤ 0.1%. The elastic response of the neo-
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FIG. 8. Small experimental apparatus. a) Top view, b) cross view, and c) a photo of the apparatus during tests. The bottom neoprene o-ring is
missing in the large experimental apparatus.

a) b)

piston

nitrile
o-ring

drainage ditch

neoprene
o-ring

(push down)

frame

FIG. 9. Large experimental apparatus. a) General view, b) details of the frame, the piston and the cylinder.

prene o-ring is affected by partial hysteresis, which represents
the most relevant source of uncertainty, with ∆Ê/Ê ≤ 5.8%
and ∆λ/λ ≤ 5.5%. Other sources of uncertainty are related to
the accuracy of CNC machines and are difficult to quantify.

C. Comparison with model prediction

Fourteen tests were conducted, ten with a Newtonian and
four with a shear-thinning fluid, with an initial fracture aper-

ture ranging from 1.47 to 0.73 mm; four test had a non-zero
external pressure. Table I lists the main parameters of the
tests. The rheological parameters were obtained by interpo-
lating the rheometrical data in the shear rate range of the ex-
periments. With a similar approach, the elastic parameters Ê
and λ were obtained by interpolating a power-function in the
range of fracture aperture during the tests. We note that the
reaction of the wall was always supra-linear, with λ in the
range 1.10÷1.65, for the ten tests with Newtonian fluids, and
always sublinear, with λ in the range 0.60÷0.80, for the four
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tests with shear-thinning fluids. On the contrary, perform-
ing experiments in radial flow, the wall reaction was always
linear32. This behaviour is dictated by the different geometry
of the o-ring seat, with respect to the piston in radial geom-
etry, while in the case of the small apparatus the presence of
two o-rings in opposition reduces the value of λ . Exception is
made for Exp. 8 for which also in the small apparatus only the
upper o-ring was installed. An overload was always present,
except for Exp. 6, since for this experiment the piston weight
was balanced. Many different values of the Winkler subgrade
coefficient Ê were employed, spanning more than three or-
ders of magnitude. The large apparatus was always used with
Newtonian fluids except for one case, while the small one was
coupled with shear-thinning fluids in all cases. Using two ap-
parata allowed us to verify the lack of scale effects, and to
test two different sealing techniques, associated with different
elastic responses.

The repeatability of the experiments turned out to be fairly
good, as shown by the near overlap of the time series of the
fracture aperture for Exp. 1 and 2 conducted under the same
conditions except for h0.

Figure 13 compares theoretical predictions and experimen-
tal results for the relationship between aperture and time; the
two latter quantities are normalized. The experimental aper-
tures match well their theoretical counterparts, capturing the
decrease of the aperture versus time towards the respective
asymptote; for some experiments there is a slight overestima-
tion, for other experiments the opposite is true with no clear
tendency. The same comparison is proposed in Figure 14 for
shear-thinning fluids; again, the match between theory and ex-
periments is fairly good, with no appreciable differences in
accuracy between different experiments. Similarly, no clear
trend towards under- or over-estimation is evident, with per-
haps a tendency of the residual aperture to exceed the theoret-
ical prediction.
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Expt. n µ̃ (Pa sn) Θ (◦C) ρ (gcm−3) h0 (mm) pe (Pa) λ Ê (MPam−λ ) pt (Pa) f0 (N) Apparatus

1 1 0.24 23.0 1.240 0.97 0 1.36 45.5 1200 78.35 L
2 1 0.24 23.0 1.240 0.73 0 1.36 45.5 1200 78.35 L
3 1 0.50 23.0 1.250 1.21 0 1.43 63.7 950 78.35 L
4 1 1.36 20.0 1.257 1.10 0 1.31 32.5 800 78.35 L
5 1 1.11 19.0 1.257 1.11 0 1.45 88.2 250 78.35 L
6 1 1.06 19.5 1.256 1.46 0 1.60 244.9 450 0.00 L
7 1 0.59 22.6 1.256 1.06 0 1.65 477.5 900 20.20 L
8 1 0.38 23.5 1.256 0.75 0 1.10 29.6 1000 20.20 S
9 1 0.51 22.0 1.250 0.98 2600 1.30 25.3 0 78.35 L
10 1 1.36 20.0 1.257 0.93 1200 1.15 10.9 0 78.35 L

11 0.42 1.52 26.3 1.175 0.98 0 0.69 1.3 0 20.20 S
12 0.46 1.56 27.0 1.175 1.26 11400 0.80 2.6 0 20.20 S
13 0.46 1.52 27.0 1.175 0.97 6700 0.80 2.6 0 20.20 S
14 0.6 1.90 27.0 1046 0.80 0 0.6 0.4 0 20.20 S

TABLE I. Parameters adopted for the tests in planar geometry. n and µ̃ are the fluid behaviour and consistency indexes, Θ is the temperature
during the test, ρ is the fluid density, h0 is the initial fracture height, pe is the external pressure during backflow, λ , Ê and pt are the exponent
characterizing the nonlinearity of the elastic response, the Winkler subgrade coefficient and the threshold pressure, with p = pt + Êhλ , where
the threshold pressure is the minimum value of pressure required to lift the piston and is due to pre- compression of the o-rings; f0 is the
external load, positive if it favours the fracture closure. In the last column, the symbol “L” and “S” indicates that the large/small experimental
apparatus was used.

10
-2

10
-1

10
0

10
1

10
2

10
3

T

0.1

1

1

H

3.1

1

1

3.36

Exp. 1

2

3

4

5

6

7

8

9

10
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IV. THE EFFECTS OF LEAK-OFF

A further refinement to the conceptual scheme is consid-
ering the additional effect of leak-off, with the fluid infiltrat-
ing the matrix surrounding the fractures, see Longo and Di
Federico40. This loss of fluid potentially occurs throughout
both: i) the border of the fracture, through a surface area of
length Ll and height equal to the actual aperture h(t), and ii)
the two walls through a surface area Al . As a simplification,
we assume that the details of the fluid flow in the surrounding
matrix can be neglected and that the pressure gradient control-
ling the leak-off is of order (p− p0)/l0, l0 being a character-

istic length of the process and p0 a reference pressure within
the matrix. The leak-off fluid velocity is assumed equal to

u =

(
k

µe f f

)1/n (p− p0)
1/n

l1/n
0

, (33)
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where k is the permeability of the matrix and µe f f is the ef-
fective viscosity, with41

k
µe f f

≡ Λk(1+n)/2,

Λ =
1

2Ct

(
50
3

)(n+1)/2( n
3n+1

)n
φ (n−1)/2

µ̃
, (34)

where Ct is the tortuosity equal to42 Ct = (25/12)(n+1)/2.
Leak-off can occur along the fracture edge of height h(t), or
diffusely through the fracture walls as a consequence, e.g., of
pre-existing fractures.

When modified by adding sink terms, eq. (11) becomes

dh(t)
dt

=
1

2(1+n)/n(2n+1)µ̃1/n
h(t)(2n+1)/n

∣∣∣∣∂ p(x, t)
∂x

∣∣∣∣1/n−1

× ∂ 2 p(x, t)
∂x2 −χ1h(t)(p− p0)

1/n−χ2(p− p0)
1/n, (35)

where χ1 = [M−1/nL1/nT 2/n−1] is

χ1 =
Ll

L

(
k

l0µe f f

)1/n

, (36)

and χ2 = [M−1/nL1+1/nT 2/n−1] is

χ2 =
Al

L

(
k

l0µe f f

)1/n

. (37)

Assuming that the reference pressure within the matrix is the
well bore pressure, i.e. p0 = pe, eq. (35) becomes in dimen-
sionless form

dH(T )
dT

= H(T )(2n+1)/n
∣∣∣∣∂P(X ,T )

∂X

∣∣∣∣(1−n)/n
∂ 2P(X ,T )

∂X2

− χ̃1H(T )P(X ,T )1/n− χ̃2P(X ,T )1/n, (38)

where χ̃1 = χ1tc p1/n
c and χ̃2 = χ2h−1

0 tc p1/n
c are dimensionless

coefficients.
The integral equation (14) and the boundary and initial con-

ditions (15) still hold. We notice that in order to guarantee that
∂P(1,T )/∂X = 0 we assume that no leak-off from the border
of the fracture occurs at X = 1.

The numerical solution is obtained with a code written in
Mathematica, with a parametric solver for P(X ,T ) as a func-
tion of χ̃1 of χ̃2, n, Hi+1, Hi, ∆t, where Hi is the value of H
at time i∆t. At each time step, only Hi+1 is free, all the other
parameters are known. Hence, at each step:

• the pressure P(X)i+1 is estimated by solving eq.(38)
in parametric form and approximating the time deriva-
tive with Ḣ ≈ (Hi+1 −Hi)/∆t, with P(0)i+1 = 0 and
P′(1)i+1 = 0; Hi+1 is the free parameter and H0 = 1.
Note that the algorithm guarantees a correct treatment
of the boundary conditions on the pressure at the inlet
and on the pressure gradient at the outlet, which would
otherwise appear as hill-posed and requiring for shoot-
ing method after converting the problem to an initial
value problem.

• The pressure field is numerically integrated in paramet-
ric form in the space domain [0,1]; the free parameter
is Hi+1.

• The parametric integral is used in eq.(14) and the equal-
ity is forced with a Newton method to estimate Hi+1.

• The procedure is repeated at the next time step.

An example code in Wolfram Mathematica 11 is available
in https://github.com/sandrolongo2/sandrocodes. A fully ex-
plicit advancement in time with an adapted time step guar-
antees an adequate reproduction of the analytic solution for
χ̃ = χ̃2 = 0, see figure 15 showing the results for different
combinations of the two parameters controlling leak-off. The
dotted green curve and the thick red curve are the analytical
solution and the numerical computation, respectively, for the
case without leak-off. The remaining curves, associated with
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either non-zero χ̃1 or non-zero χ̃2, show the late-time decay
is strongly influenced by the leakage effects, with a faster clo-
sure of the fracture with respect to the absence of leakage.
The effect of the two different leak-off modes is very simi-
lar, although the first mode reduces its effect more rapidly due
to both the reduction in pressure in the fracture and the pro-
gressive closure of the fracture itself; in the second mode it
is assumed that the leakage area is invariant and therefore the
decay of the effect is due only to the drop in pressure over
time.

V. CONCLUSIONS

Our study tackles the quantitative characterization of the
flow back phenomenon of a power-law non-Newtonian fluid
taking place in a plane, smooth rock fracture characterized
by closing walls associated with various degrees of elasticity.
The Newtonian fluid is included as a special case. Closed-
from expressions for the fracture aperture, pressure field, dis-
charge rate and drainage time are made available for rigid
walls as functions of outlet pressure, overload and recovery
rate, and rheological parameters. Our result belong to the cat-
egory of simplified models and may be used to infer key ten-
dencies and inform upscaling approaches.

Two specific laboratory apparata were built, and an experi-
mental campaign was devised to reproduce the theoretical hy-
potheses as closely as possible, overcoming the difficulties in-
herent in the control of the elastic reaction and with an ade-
quate seal, reducing friction to a minimum, carefully check-
ing that there was adequate air venting during the filling phase
to avoid trapped air bubbles. The accuracy of the piston and
cylinder geometry is a key element of the experimental work,
since the dependence of the flow rate on the third power of
the fracture opening (for a Newtonian fluid) amplifies the un-
certainties by a factor of 3: the uncertainty in the value of
h is tripled when calculating the uncertainty in the value of
the flow rate. Special care was also taken with the test fluid,

both when creating the mixture and when measuring the rhe-
ological parameters, by carefully choosing the interpolation
range of the power-law model based on the expected range of
shear rate. This is a consequence of the fact that the power-
law model, like other rheological laws, is an approximation
of the real constitutive equation of non-Newtonian fluids and
yields different values of the consistency index and of the flow
behaviour index when the model is fitted to different ranges
of shear rate. Theoretical results were confirmed by our ex-
periments, generally with a good match and minor under- or
over-estimation in the order of a few percent.

Further particular conclusions may be drawn from our
work:

• The special case of zero outlet pressure and over-
load has a simple, explicit closed-form solution tend-
ing asymptotically to total closure and zero discharge;
its late-time behaviour shows a scaling t−n/(n+λ+1) for
the aperture and −(2n+λ +1)/(n+λ +1) for the dis-
charge. These exponents clearly elucidate the depen-
dency from flow behaviour index n and exponent λ

modulating the wall reaction: very shear-thinning fluids
(smaller n) and reactive walls (larger λ ) are associated
with a more gradual closure.

• The solution for the general case of non-zero outlet
pressure pe and overload f0 tends asymptotically to a
constant value proportional to (pe− f0)

1/λ .

• The dimensionless drainage time TY required to recover
Y % of the fluid initially residing in the system decreases
with increasing n and Pe and decreases with λ , and
the differences are greater the more the fluid is shear-
thinning. For recovery values close to 100%, TY is ex-
tremely sensitive to variations of model parameters.

• Experiments can also be conducted on a small geomet-
ric scale, but with adequate control of all test steps to
limit disturbances and reduce the uncertainty of the re-
sults.

• The use of two different apparata allowed exploring
both sub- and supra-linear wall reactions and showed
the lack of scale effects.

The body of experimental and theoretical work on Newto-
nian and non-Newtonian power-law backflow from a fracture
with relaxing walls towards a central well or borehole in the
two limit flow configurations (plane and radial) allows to de-
scribe the phenomenon in a quite comprehensive way within
the framework of the single fracture conceptualization. Prob-
lem variables are described as functions of system parameters
in dimensionless form without the need of specifying any di-
mensionless number for a Newtonian fluid11, and quantifying
the only flow behaviour index n for power-law fluids, hav-
ing a two-parameter constitutive equation (Chiapponi et al.32

and this paper); when a three-parameter rheology such as the
Ellis model is adopted the need for an additional dimension-
less quantity, namely the ratio between the characteristic shear
stress of the Ellis fluid τ0 and the rock modulus of elasticity E,
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arises33. Similarly, the incorporation of slip effects, relatively
common in non-Newtonian flows, would give rise to one or
more dimensionless numbers. Another intriguing option is
to optimize system performance in terms of geometry and/or
rheology using specific metrics , or model inertial flow43. Fi-
nally, the need for incorporating uncertainty into modelling of
fracking phenomena has recently been brought to attention in
the literature44.
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Appendix A: Late-time approximations for Pe−F0 = 0

For late time (T � 1), equations (21) and (22) simplify to

H(T )≈ (n+2)−1/(1+n+λ )(1+n+λ )−n/(1+n+λ )T−n/(1+n+λ ),
(A1)

P(X ,T )≈ (n+2)(n+1)/(1+n+λ )(1+n+λ )−λn/(1+n+λ )

n+1
×T−λn/(1+n+λ )×

[
1− (1−X)n+1] . (A2)

Appendix B: Early- and late-time approximations for
Pe−F0 > 0

For early time (T � 1) eq. (23) reduces to

T ≈ 1

(n+2)
1
n (1+n+λ )

×
[

1

H
1+n+λ

n

(
1+

1+n+λ

n(1+n)(1+λ )

Pe−F0

Hλ

)]∣∣∣∣H
1
. (B1)

For late time (T � 1) the approximation of eq. (23) is

T ≈ H−(1+n+λ )/n

(n+2)1/nλ (1−n)

(
1− Pe−F0

Hλ

)1−1/n

+
H−(1+n+λ )/n

(n+2)1/n(1+n+λ )

Γ(1−1/n)Γ((λ +1)(n+1)/(nλ ))

Γ(1+(1+n)/(nλ ))
,

(B2)

which is singular for n = 1. The symbol Γ(·) is the Gamma
function.

Appendix C: Identity for specific value of the hypergeometric
function 2F1

The following identity holds for any positive z45

2F1 (1,3;4;z) =− 3
2z3 [z(z+2)+2ln(1− z)] . (C1)
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