
       XXXIX Convegno Nazionale di Idraulica e Costruzioni Idrauliche 

        Parma, 15-18 Settembre 2024 

   

 

HYDRAULIC JUMP ASSOCIATED WITH AN ABRUPT CHANNEL 

DEVIATION IN LAMINAR FLOW OF YIELD STRESS FLUIDS  

Andrea Baroni 1, Alessandro Lenci 1, Sandro Longo 2, Vittorio Di Federico 1 

(1) Dipartimento di Ingegneria Chimica, Civile, Ambientale e dei Materiali, Alma Mater Studiorum – Università di Bologna  

(2) Dipartimento di Ingegneria Civile e Architettura, Università di Parma 

KEY POINTS 

• This study analyses the effect of a sudden deflection of the lateral channel wall on the laminar flow of a Herschel-

Bulkley fluid, which can cause a hydraulic jump. 

• The deflection originates a perturbation wave, and the phenomenon is described by a four equations system. 

• From the general case of a Herschel-Bulkley fluid, the special cases for Bingham, Ostwald-DeWaele and 

Newtonian fluids are derived.  

1 INTRODUCTION 

A hydraulic jump occurs when a free surface flow passes abruptly from supercritical to subcritical regime, 

i.e. from a lower depth Y1 to a greater depth Y2; upstream of the jump, much of the energy is kinetic due to the 

high velocity of the flow; downstream, the flow is slower and only a small portion of the energy is kinetic. The 

transition happens due to a change in the boundary conditions, such as a variation of the geometry of the 

channel, a change of roughness of the wall or a change of slope. Hydraulic jump in laminar flows of Newtonian 

and non-Newtonian fluids has been studied in the context of mine tailings flow in artificial channels 

(Haldenwang & Slatter, 2006; Burger et al., 2010); some earlier contributions on the topic for rectilinear flow 

are Zhou et al. (2007) for Bingham fluids and Ugarelli & Di Federico (2007) for Herschel-Bulkley fluids. 

In general, a free surface flow encountering a change in the geometry of the channel undergoes a 

perturbation of its characteristics; the entity of the perturbation varies greatly, depending on the upstream flow 

conditions, the nature of the geometric change and, for viscous flows, the rheological properties of the fluid. 

For inviscid flows, the case of an abrupt deviation of the channel axis, which in turn generates, under certain 

conditions, a hydraulic jump, has been studied by Ippen (1936) and Ippen & Knapp (1936). They also extended 

the analysis to a continuously curving channel (Marchi & Rubatta, 1981). 

To our knowledge, there is a general lack of literature on the conditions for the generation of a hydraulic 

jump in laminar flows in an abruptly deflected channel. In the following, we adopt a Herschel-Bulkley model 

to adequately represent the rheologic behavior of mine tailings, slurries and industrial fluids; the effect of a 

hydraulic jump on currents of these fluids must be carefully considered, as an increase in flow depth associated 

with the hydraulic jump can cause overspill of toxic or highly polluting substances out of channel boundaries 

and associated contamination. In the following, the equations describing the phenomenon are derived and an 

approximate analytical solution for the critical depth is proposed. 

2 THEORY 

2.1 Channel geometry 

A horizontal, wide rectangular channel with negligible wall effects, in which a Herschel-Bulkley fluid 

flows, is subject to an abrupt deflection of its axis by an angle θ, causing a perturbation in the flow conditions, 

as shown in Figure 1a. The change in flow conditions occurs only downstream of a shock wave, originating in 

the vertex of the deflection and inclined by an angle β from the wall; β is called the Mach angle. 

The flow is laminar, and the velocity distribution is shown in Figure 1b and in equation (1), derived by Di 

Federico (1998); in (1), Y is the flow depth, U0 is the shear-free velocity, ξ = y/Y and λ = τ0/τw the ratio between 

the yield stress and the bottom shear stress. 
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Figure 1. a) Geometry of the channel, b) Velocity profile 
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2.2 Governing equations 

A Herschel-Bulkley fluid follows the three-parameter model shown in equation (2), where U is the velocity, 

τ is the shear stress, τ0 is the yield stress, K is the consistency and n is the flow behaviour index (Longo et al., 

2015). 
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To describe the phenomenon, four equations have to be solved: the mass balance equation, the momentum 

balance equations in both directions, perpendicular and parallel to the wave front, and the constitutive equation 

for a Herschel-Bulkley fluid. 

The solution of these equations gives a system of four transcendental equations (3) with four unknowns 

which can only be solved by numerical methods, where η=Y2/Y1 is the ratio between downstream and upstream 

depths and ζ=U02/U01 the respective velocity ratio. Known parameters are the geometry of the channel, the 

rheological properties of the fluid and the upstream flow conditions, which can be expressed by the Froude 

number Fr1. 
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It can be observed that the axis deflection θ causes an increase of the downstream depth, which increases 

for larger values of θ, as shown in Figure 2. The deflection also forces the downstream velocity to decrease. 

Note that, since 0 < β < π/2, there is an inverse relationship between the Mach angle and the upstream Froude 
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number. This means that for a flow which is well into the supercritical regime, the hydraulic jump is located 

at a greater distance from the deflection section. 

From the general case for a Herschel-Bulkley fluid, other special cases can be derived. Substitution of the 

rheological parameters n and τ0 in the model, gives simplified systems for Bingham, Ostwald-DeWaele and 

Newtonian fluids. 

 

Figure 2. Deflection θ versus Mach angle β for various values of depth ratio η 

Since the system is only solvable by numerical methods, an approximate analytical solution is also sought, 

following Zhou et al. (2007) and Ugarelli & Di Federico (2007). This solution is obtained from an expansion 

in Taylor series, which gives a non-algebraic formula allowing the direct calculation of the downstream depth. 

With further simplifications, an approximate value for the critical depth is obtained. 
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