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This study theoretically and experimentally explores the behaviour of axisymmetric gravity currents of
Newtonian and power-law fluids in inhomogeneous porous media. Systematic heterogeneity along the
vertical is represented by a power-law permeability variation governed by the parameter x, mimicking
trends in natural media. A self-similar solution describing (i) the rate of propagation and (ii) the profile of
the current is derived by considering a current of volume proportional to time raised to a non-negative
power a. Four critical values of a are determined: the first two affect the time dependency of the radius,
height and average gradient of the current on flow behaviour index n and x; the third one dictates if the
current accelerates or decelerates; the fourth one governs the asymptotic validity of the thin current
approximation. Experimental validation is performed using shear-thinning suspensions and Newtonian
mixtures in constant- and variable-flux regimes. A stratified porous medium composed of four uniform
strata of glass beads with different diameters is used for this purpose. The experimental results for the
radius and profile of the current agree well with the self-similar solution except at the beginning of
the process, due to the limitations of the 1-D assumption and to boundary effects near the injection zone.
An uncertainty analysis indicates that the rheological fluid behaviour and the variation in permeability
significantly affect the propagation of the current.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Extensive research has been conducted on gravity-driven
motion through porous media. These studies have been motivated
by several geophysical and industrial applications, including
enhanced oil recovery, contaminant migration, seawater intrusion,
and carbon dioxide sequestration in geological formations [1–4].
The behaviour of porous gravity currents is generally analyzed by
considering the release of a time-variable volume of an intruding
fluid in an infinite domain under the thin current assumption.
Solutions in self-similar form were derived by Huppert and Woods
[5] for plane geometry and by Lyle et al. [6] for axisymmetric
geometry. Di Federico et al. [7,8] recently extended these studies
to non-Newtonian flow, to handle the complex rheological nature
of many fluids involved in relevant applications. These include
injection of displacing suspensions or muds in enhanced oil recov-
ery and well drilling [9,10], crude oil flow in reservoirs [11], soil
remediation via nanoparticles advected by fluid carriers [12],
subsurface contamination by polymeric pollutants (e.g. [13] and
references therein), soil grouting [14], flow of blood in biological
porous media [15], blood filtration through reticulated foams
[16]. Diverse rheological models are available in the literature for
the description of non-Newtonian behaviour [17]; among these,
the simplest is represented by the two-parameter power-law
model. This formulation usually provides an accurate approxima-
tion in the intermediate shear rate range, as demonstrated in e.g.
Longo et al. [18], where a power-law model satisfactorily fitted
rheometric measurements of shear-thinning fluids in the interval
0.1–5 s�1.

In addition to rheological fluid behaviour, the propagation of
gravity driven flow in natural porous formations is strongly affected
by heterogeneity [19]. Vertical permeability and porosity gradients
have been shown to condition front propagation in plane fluid
drainage from an edge [20]. In a two-layered porous medium and
above a critical influx, the intruding fluid overrides the low-perme-
ability lower layer, enhancing mixing [4]. Investigation into the
combined effects of fluid rheology and spatial permeability varia-
tions is crucial in several applications in natural porous media
(e.g. [21]). The present study focuses on systematic permeability
variations of the kind extensively adopted in the porous media lit-
erature [2,20,22–24]; these closed-form expressions approximately
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mimic trends occurring in natural media. A coupled theoretical and
experimental approach is used here to analyse the influence of ver-
tical permeability gradients perpendicular to the flow direction on
axisymmetric non-Newtonian power-law gravity currents with
time-variable inflow. First, the problem is formulated in dimension-
less form (Section 2.1) and a similarity solution that generalises the
results of Di Federico et al. [8] is derived (Section 2.2). Second, the
dependency of the radius and height of the current on problem
parameters is discussed (Section 3). The theoretical solution was
tested against data from laboratory experiments conducted with
shear-thinning suspensions and Newtonian mixtures in constant-
and variable-flux regimes; the experimental setup is described in
Section 4.1, while the results of the experiments are presented
and compared with the theory in Section 4.2. The goodness of the
approximation provided by the proposed formulation is examined
via an ad hoc uncertainty analysis (Section 4.3). A set of conclusions
closes the paper (Section 5).

2. Theoretical model

2.1. Formulation

Consider the setting depicted in Fig. 1, in which r and z repre-
sent radial and vertical coordinates respectively. An axisymmetric
gravity current of a non-Newtonian fluid of uniform density q,
with rheology described by a power-law model s ¼ mj _cjn�1 _c, with
s and _c the shear stress and rate, m the consistency index, and n the
flow behaviour index, is released at the origin and intrudes into an
infinite porous domain of depth h0 saturated with another fluid of
uniform density q� Dq. The intruding current, described by its
height hðr; tÞ in the sharp interface approximation, extends above
a horizontal impermeable bed to a coordinate denoted by rNðtÞ.
We consider the case of a isotropic heterogeneous domain in which
the medium permeability k (dimensions [L2]) is constant in the
horizontal direction but has a vertical gradient described by [2])

kðzÞ ¼ k0ðz=r�Þx�1
; ð1Þ

where k0 is a characteristic permeability, r� is a length scale, and x
is a constant. Values of x < 1; x ¼ 1 and x > 1 represent negative,
null, and positive gradients with elevation, respectively. A lower
bound is set to the value of x for assigned n, i.e.
x > x0 ¼ ðn� 1Þ=ðnþ 1Þ. This ensures the validity of the self-simi-
lar solutions derived in the sequel; physically, it is equivalent to
limit the permeability decrease with elevation. For a Newtonian
fluid (n ¼ 1), x0 ¼ 0, as earlier noted by Ciriello et al. [2] and
Fig. 1. Sketch of an axisymmetric gravity current intruding into a saturated porous mediu
(x < 1) and homogeneous (x ¼ 1) permeabilities.
Mathunjwa and Hogg [25]. Note that the permeability tends to
decrease with depth in natural porous and fractured media
[22,23], rendering the case x P 1 decidedly more common than
x < 1. We also assume that capillary effects are negligible and that
the thin current approximation holds, which allows us to disregard
motion in the ambient fluid and vertical velocities in the intruding
fluid. Under these assumptions, the pressure distribution in the
intruding current is hydrostatic and given, for 0 6 z 6 h, by
pðr; z; tÞ ¼ p1 þ Dqghðr; tÞ � qgz, where p1 ¼ p0 þ ðq� DqÞgh0 is a
constant and p0 is the constant pressure at z ¼ h0.

The equation of motion of a non-Newtonian power-law fluid in
a porous medium is given by [26,27]

rp� qg ¼ �
leff

k
j ujn�1u ð2Þ

where p is the pressure, u the Darcy velocity, g the acceleration due
to gravity, and leff the effective viscosity (dimensions [M L�n T n�2]).
The inverse of the proportionality factor that appears in (2) is
termed ‘mobility’ and is expressed as [8]

k
leff
¼ 1

2Ct

1
m

n/
3nþ 1

� �n 50k
3/

� �ðnþ1Þ=2

; ð3Þ

where / and Ct (> 1) represent medium porosity and tortuosity,
respectively. The latter factor empirically accounts for the complex
nature of non-Newtonian fluid flow in porous media. As such, it has
been expressed in several ways in the literature in the form
Ct ¼ CtðnÞ [28], with the various formulations differing significantly.
The expression proposed by Pascal [29], i.e., Ct ¼ ð25=12Þðnþ1Þ=2

simplifies the mobility expression to k=leff ¼ ð1=ð2mÞÞ
ðn/=ð3nþ 1ÞÞnð8k=/Þðnþ1Þ=2 and, for a Newtonian fluid (n ¼ 1),
allows (2), combined with (3), to reduce to Darcy’s law,
rp� qg ¼ �ðl=kÞu, where l is the dynamic viscosity. Pascal’s
formulation for the tortuosity is adopted in the interpretation of
the experimental results. The hydrostatic assumption allows the
pressure gradient to be expressed as a function of the unknown free
surface as @p=@r ¼ Dqgð@h=@rÞ, which, together with (1) and (2),
yields the following expression for Darcy velocity in the r direction
for purely horizontal flow:

uðr; z; tÞ ¼ � KDqgð Þ1=nkðnþ1Þ=ð2nÞ
0

z
r�

� �ðx�1Þðnþ1Þ
2n @h

@r

����
����
1=n�1

@h
@r
; ð4Þ

K ¼ Kð/;m;nÞ ¼ 1
2Ct

50
3

� �ðnþ1Þ=2 n
3nþ 1

� �n /ðn�1Þ=2

m
; ð5Þ
m of thickness h0. The left panel illustrates vertically increasing (x > 1), decreasing
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where the latter factor reduces to K ¼ 1=l for a Newtonian fluid
(n ¼ 1). For x < 1, the behaviour of (4) is singular for z! 0, but this
does not affect the overall behaviour of the current. The local con-
tinuity condition takes the following form [6]

1
r
@

@r
r
Z h

0
udz

 !
¼ �/

@h
@t
: ð6Þ

The global mass balance equation for a variable-volume inflow is as
follows:

2p/
Z rNðtÞ

0
rhðr; tÞdr ¼ Qta; ð7Þ

where Q (dimensions ½L3 T�a�) and a are constants. For an instanta-
neous fluid release (a ¼ 0), Q is the volume of the current; for a con-
tinuous injection (a > 0), the volumetric discharge is Q 0 ¼ aQta�1.
For high values of the Bond number (the influence of surface ten-
sion effects is limited), the problem statement is completed by
the boundary condition at the current front

h rNðtÞ; tð Þ ¼ 0: ð8Þ

The previous equations may be non-dimensionalised by setting
T ¼ t=t�; R ¼ r=r�; RN ¼ rN=r�, and H ¼ h=r�, where, for a – 3, the
time, space, and velocity scales are

t� ¼ Q
/v�3

� �1=ð3�aÞ

; r� ¼ v�t�; v� ¼ ðKDqgÞ1=nkð1þnÞ=ð2nÞ
0

/
: ð9Þ

The special case of a ¼ 3 requires a different non-dimensional
formulation since the proposed time scale breaks down and an
additional velocity scale arises [7,30], as addressed in Appendix A.
The scaled equation satisfied by the interface profile for a – 3,
obtained by combining the dimensionless versions of (4) and (6),
is as follows

1
F1

1
R
@

@R
RHF1

@H
@R

����
����
1=n�1

@H
@R

" #
¼ @H
@T

; ð10Þ

F1 ¼
ðx� 1Þðnþ 1Þ þ 2n

2n
; ð11Þ

where the factor F1 reduces to unity for a homogeneous aquifer. The
dimensionless form of (7) is

2p
Z RN

0
RHdR ¼ Ta: ð12Þ

Finally, boundary condition (8) is unchanged in dimensionless
coordinates.

2.2. Self-similar solution

Eqs. (10) and (12) provide scaling relationships for the current
length R and height H with time given by R � T F2 and H � T F3 , with

F2 ¼
½ðx� 1Þðnþ 1Þ þ 2�aþ 2n

2½xðnþ 1Þ þ 2� ; F3 ¼
ðnþ 1Þa� 2n
xðnþ 1Þ þ 2

: ð13Þ

Hence a convenient similarity variable to solve the system of gov-
erning equations takes the form

g ¼ F F4
1 R=T F2 ; F4 ¼

n
xðnþ 1Þ þ 2

ð14Þ

with a prefactor defined to simplify subsequent expressions. The
system permits self-similar solutions for front position and current
height of the form RNðTÞ ¼ ðgN=F F4

1 ÞT
F2 and HðR; TÞ ¼ F2 F4

1 T F3 f ðgÞ,
where gN is defined as the value of g at the current nose R ¼ RNðTÞ.
Introducing a normalised similarity variable f ¼ g=gN; f ðgÞ is
rescaled as f ðgÞ ¼ g F5

N wðfÞ, where
F5 ¼
2ðnþ 1Þ

ðx� 1Þðnþ 1Þ þ 2
ð15Þ

and the final form for the dimensionless current profile becomes

HðR; TÞ ¼ F2F4
1 gF5

N T F3 wðfÞ; ð16Þ

in which w is the thickness profile. Adoption of (14) through (16)
yields the following expressions for (10) and (12) respectively:

fwF1 w0 w0j j1=n�1
� �0

þ F2f
2w0 � F3fw ¼ 0; ð17Þ

gN ¼ 2p
Z 1

0
fwðfÞdf

� ��1=ðF5þ2Þ

ð18Þ

with

wð1Þ ¼ 0; ð19Þ

where the prime indicates d =df. For x ¼ 1, the governing equations
and results reduce to those derived by Di Federico et al. [8] for
non-Newtonian gravity currents in homogeneous porous
media. The numerical factors defined earlier become F1 ¼ 1;
F2 ¼ ðaþ nÞ=ðnþ 3Þ; F3 ¼ ½aðnþ 1Þ � 2n�=ðnþ 3Þ; F4 ¼ n=ðnþ 3Þ,
and F5 ¼ nþ 1. For n ¼ 1 and any x, results can be derived for New-
tonian axisymmetric gravity currents flowing in vertically graded
media; in this case, F1 ¼ x; F2 ¼ ðaxþ 1Þ=½2ðxþ 1Þ�;
F3 ¼ ða� 1Þ=ðxþ 1Þ; F4 ¼ 1=½2ðxþ 1Þ�, and F5 ¼ 2=x. For n ¼ 1
and x ¼ 1, the previous expressions can be further simplified to
those derived by Lyle et al. [6] in dimensional form, and
F1 ¼ 1; F2 ¼ ðaþ 1Þ=4; F3 ¼ ða� 1Þ=2; F4 ¼ 1=4, and F5 ¼ 2. The
general equations can be solved analytically for a current of
constant volume (a ¼ 0), yielding the following solutions:

wðfÞ ¼ ðx� 1Þðnþ 1Þ þ 2
2ðnþ 1Þ

n
xðnþ 1Þ þ 2

� �n

ð1� fnþ1Þ
� � 2

ðx�1Þðnþ1Þþ2
;

ð20Þ
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ðx� 1Þðnþ 1Þ þ 2
xðnþ 1Þ þ 2

n
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xðnþ1Þþ2

� xðnþ 1Þ þ 2
2p

C 2
ðnþ1Þ �

xðnþ1Þþ2
ðx�1Þðnþ1Þþ2

� �
C 2

nþ1

� �
C 2

ðx�1Þðnþ1Þþ2

� �
2
4

3
5
ðx�1Þðnþ1Þþ2
2ðxðnþ1Þþ2Þ

; ð21Þ

where Cð�Þ is the gamma function. The latter solution is consistent
with the limitation x > ðn� 1Þ=ðnþ 1Þ introduced in the problem
setup. For x ¼ 1, (20) and (21) reduce to Eq. (17) in [8]. For n ¼ 1
and any x > 0, (20) and (21) become

wðfÞ ¼ x
4ðxþ 1Þ 1� f2	 
� �1=x

; ð22Þ

gN ¼
4ðxþ 1Þ

x

� �1=½2ðxþ1Þ� xþ 1
px

� �x=½2ðxþ1Þ�

: ð23Þ

For n ¼ 1 and x ¼ 1, the classical result obtained by Pattle [31],
wðfÞ ¼ 1� f2	 


=8 and gN ¼ 2=p1=4, is recovered. To numerically
integrate (17) a second boundary condition is obtained in addition
to (19) by: (i) generating an asymptotic solution near f ¼ 1 in terms
of a power (Frobenius) series; (ii) deriving it to obtain a condition
on the first derivative of w as

w0jf!1 ¼ �a0b�b�1; a0 ¼
b1=n

F2

 !�nb

; b ¼ 1
1þ nðF1 � 1Þ ; ð24Þ

where � ¼ 1� f is a small quantity, and b is non negative due to the
constraint x > ðn� 1Þ=ðnþ 1Þ.
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It is worth noticing that the differential Eq. (17) becomes singu-
lar both in the origin (f ¼ 0), because of the vanishing of the higher
order term, and at the front (f ¼ 1), due to boundary condition (8).
Near the origin, the self-similar solution for a – 0 is inconsistent
with model assumptions, as the small-slope approximation is vio-
lated. As suggested by Di Federico et al. [8], one can exclude from
the numerical computation a small cylinder containing a volume of
fluid negligible with respect to the injected volume (except possi-
bly for T ! 0). This does not influence the numerical solution,
which is obtained integrating from the front end of the current.
The singularity near the current tip is treated approximating the
solution with a Frobenius series. For �– 0; w0ð1� �Þ is always neg-
ative and finite, and the boundary condition near the front end is a
continuous function of x.
3. Discussion of results

The time exponents F2 and F3 of the radius and height of the
gravity current are given by (13) and depend on the time rate of
change of the fluid volume, a, the flow behaviour index n, and
the permeability variation along the vertical, parametrized by x.

Both F2 and F3 are increasing functions of a under model
assumptions; F3 is so for any x, while F2 increases with a for
x > x0 ¼ ðn� 1Þ=ðnþ 1Þ. The dependence of F2 and F3 on n and
x is more complex. It is found that for a first critical value
ax ¼ 2n=ðnþ 1Þ; F2 and F3 are independent on the permeability
variation x and take the values F2ðaxÞ ¼ n=ðnþ 1Þ and
F3ðaxÞ ¼ 0. For a < ax; F2 is a decreasing function of x; the
reverse is true for a > ax. The behaviour of F3 is opposite to that
of F2, as it increases/decreases with x for a < ax or a > ax. For a
second critical value an ¼ xþ 2; F2 and F3 are independent on
the flow behaviour index n, reducing to F2ðanÞ ¼ ðxþ 1Þ=2 and
F3ðanÞ ¼ 1. For a < an; F2 is an increasing function of n; the reverse
is true for a > an. Again, the behaviour of F3 is opposite to that of
Fig. 2. (a)–(f) The value of the time exponents F2; F3 and F3 � F2 for a current with lengt
/ Ta in a porous medium with permeability varying vertically as zx�1. Results are shown
function of x for n ¼ 0:5 and as a function of n for x ¼ 1:5 (left and right columns, resp
F2, as the radius and the average height of the current are inversely
proportional by virtue of mass balance.

To provide a physical explanation of the observed tendencies, it
is useful to evaluate the average free-surface gradient driving the
motion, given by

@H
@R

� �
¼ F3F4

1 gF5�1
N T F3�F2

dw
df

� �
;

F3 � F2 ¼
a½ð3�xÞðnþ 1Þ � 2� � 6n

2½xðnþ 1Þ þ 2� ; ð25Þ

where ðdw=dfÞ is the average value of the derivative of the thickness
profile over the interval 0–1. The behaviour of the exponent F3 � F2

as a function of x for given n, and of n for fixed x, is qualitatively
similar to that of F3, with the same critical values ax ¼ 2n=ðnþ 1Þ
and an ¼ xþ 2; for a ¼ ax; F3 � F2 ¼ �n=ðnþ 1Þ; for a ¼ an; F3�
F2 ¼ ð1�xÞ=2. F3 � F2 is an increasing function of a for
x < x1 ¼ ð3nþ 1Þ=ðnþ 1Þ, or, conversely, n > n1 ¼ ðx� 1Þ=
ð3�xÞ; the reverse is true for x > x1 or n < n1.

Fig. 2(a)–(f) display how F2; F3 and F3 � F2 depend on x for
fixed n ¼ 0:5 and on n for fixed x ¼ 1:5; results for various values
of a, including the critical ones, are shown. The two reference val-
ues (n ¼ 0:5 and x ¼ 1:5) are selected for illustrative purposes and
represent common cases in natural porous media, i.e. a shear-
thinning fluid and a permeability increasing with elevation from
the bottom.

For a given fluid (fixed n), a current with a volume that remains
constant (a ¼ 0) or increases moderately with time (a < ax),
becomes thinner (F3 < 0) at a particular point as time increases.
This type of current is thus confined to zones of high permeability
for x < 1, and of low permeability for x > 1; as a consequence the
propagation rate becomes lower as x increases. Conversely, for
a > ax the current height increases with time (F3 > 0) and reaches
zones of low permeability for x < 1, and of high permeability for
x > 1; thus the propagation rate increases with x. Consistently
h / T F2 , height / T F3 , mean free-surface gradient/aspect ratio / T F3�F2, and volume
for F2; F3 and F3 � F2 in the upper, intermediate and lower rows, respectively, as a
ectively), and for different values of a.
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with the previous interpretation, for given a the average spatial
gradient decreases with time (F3 � F2 < 0) when x > x2 ¼
½að3nþ 1Þ � 6nÞ=ðaðnþ 1Þ�, and more so for larger x. This implies
a lower average resistance to the flow motion due to an increased
average permeability. Qualitatively similar graphs are obtained
with other reference values of n, except that the critical value ax

increases with n.
When analyzing the behaviour of the time exponents for given

permeability grading, different tendencies are observed. For posi-
tive grading (x > 1), it is seen that, for a less than critical volume
increase with time (a < an), the gradient decreases with time
(F3 � F2 < 0), more so for increasing n. This implies a reduced aver-
age resistance to the flow, which brings about an increase of the
spreading rate (larger F2) for larger values of n. For a rapidly
increasing influx (a > an), the tendency is reversed and F3 � F2,
though remaining negative, increases with n, implying in turn a
modest decrease in the propagation rate F2 as n increases. In
homogeneous (x ¼ 1) and negatively graded media (x ¼ 0:5) the
same trends with n are observed (not shown graphically), but
Fig. 3. (a)–(f) Thickness profile w as a function of the rescaled similarity variable f. Results
(upper, intermediate, and lower rows, respectively), constant volume and constant flux
lines), Newtonian (solid light blue lines), and shear-thickening (dot-dashed green lines) fl
Lyle et al. [6] for n ¼ 1 and x ¼ 1 are also shown (dotted lines). (For interpretation of the
this article.)
F3 � F2 takes on positive values for large enough a, indicating a
gradient increasing with time due to increasing resistance to flow,
as the current invades low-permeability zones.

For practical applications it is also of interest to determine if the
current front is accelerating or decelerating. The speed of the cur-
rent front is proportional to T F2�1, i.e., the current decelerates or
accelerates depending on whether a < al or a > al, where

al ¼
2½ðx� 1Þðnþ 1Þ þ 3�
ðx� 1Þðnþ 1Þ þ 2

: ð26Þ

For a Newtonian fluid (n ¼ 1), al ¼ ð2xþ 1Þ=x; for a homoge-
neous medium (x ¼ 1), al ¼ 3.

To understand how the thickness profile affects the overall
behaviour of the current via (25), in Fig. 3(a)–(f) we plot wðfÞ
obtained by numerically integrating (17) with (19) and (24), for
a ¼ 0 and 1 and various values of n and x, selected to illustrate
the cases of: (i) shear-thinning, Newtonian, and shear-thickening
fluid; (ii) negative, null, and positive permeability grading with ele-
vation. The analytical solution (20) for a ¼ 0 is perfectly repro-
are shown for vertically increasing, uniform, and vertically decreasing permeability
release (left and right columns, respectively), and for shear-thinning (dashed red
uids. (g) The similarity variable at the current front gN versus a. Results derived by

references to colour in this figure legend, the reader is referred to the web version of



70 V. Di Federico et al. / Advances in Water Resources 70 (2014) 65–76
duced. Fig. 3(c) and (d) valid for a homogeneous medium were
already presented by Longo et al. [32] and are included for compar-
ison; they also demonstrate the coincidence of numerical results
with the Newtonian results presented by Lyle et al. [6].

The thickness profile markedly increases with a for a given per-
meability variation and fluid, as the fluid volume released into the
domain is larger; this effect is also observed for values of a > 1 (not
shown). For constant volume currents, the thickness profile is lar-
ger for shear-thinning (n < 1) than for Newtonian (n ¼ 1) or shear-
thickening fluids (n > 1). However the height of the currents also
depends on gN , whose behaviour, evaluated via (18), is presented
in Fig. 3(g) as a function of a for various values of x and n. The pre-
factor gN is observed to increase with n and to decrease with a and
x, with a greater sensitivity for smaller values of x and n. These
tendencies are the opposite of those of the thickness profile.
Inspection of Fig. 3 allows to analyze the average gradient of the
thickness profile, which is seen to be lower for shear-thickening
than for Newtonian or shear-thinning fluids. This effect is more
evident for a ¼ 0, but it can be still observed for a ¼ 1 except near
the origin, where the opposite is true (the spatial gradient of the
thickness profile near the origin is of modest relevance since a lim-
ited quantity of fluid is contained there). The average gradient of
the thickness profile also increases significantly for increasing x.

The analysis of the dependency of the time exponents F2; F3

and F3 � F2 of the current length, height, and average free-surface
gradient, and of the thickness profile w and prefactor gN , on prob-
lem parameters a; n, and x, demonstrates that the current behav-
iour relies on the combined effects of depth, radius and resistance
to flow. Depth and radius are constrained by mass balance while
the flow resistance is modulated by the spatial gradient of the cur-
rent and by the average permeability over the vertical. The actual
radius and height of the current are best analyzed in dimensional
coordinates upon employing (9). Overall, a reduction in the aver-
age spatial gradient of the current implies a decrease in the mean
resistance to flow, whereas a reduction in the height of the current
increases or decreases the resistance to flow depending whether
x > 1 or x < 1. Hence if the height of the current decreases with
time, as when the volume injected does not increase too rapidly:
(i) in media with permeability increasing with elevation (x > 1),
a limited reduction of the average spatial gradient is sufficient
for the balance between the effect of the gradient and that of
permeability; (ii) in media with permeability decreasing with
elevation (x < 1), the reduction of the average gradient for
Fig. 4. (a) Experimental setup. (b) Picture of the glass tank at the end of a test. (c) Strati
axis.
shear-thickening fluids must be strong enough to balance the
increment of the flow resistance due to a flow field characterised
by low permeability. If the latter condition is not satisfied, the
average gradient increases and the hypotheses of the model are
not respected.

In fact, limitations on the parameters and on the time of rele-
vance emerge when considering the validity of the thin current
approximation. The ratio between the average height H of the cur-
rent and its radius RN is obtained from (16) and (14) as

H
RN
¼ F3F4

1 gF5�1
N T F3�F2 w; ð27Þ

where w is the average value of the thickness profile over the inter-
val 0–1. The validity of the approximation requires the former ratio
to be lower than a small parameter �1. Assigning a value to �1 allows
deriving the upper limit value of a as a function of the time horizon
T for given n and x, or vice versa (see Section 2.2 in Ciriello et al.
[2]). Asymptotically the thin current approximation requires
F3 � F2 < 0, implying a½ð3�xÞðnþ 1Þ � 2� � 6n < 0. As a P 0, this
relationship is satisfied for any a if x > x1 ¼ ð3nþ 1Þ=ðnþ 1Þ. If,
on the other hand, x < x1, a corresponding upper bound for a
arises, given by

a < a1 ¼
6n

ð3�xÞðnþ 1Þ � 2
: ð28Þ

For n ¼ 1; x1 ¼ 2 and a1 ¼ 3=ð2�xÞ; for x ¼ 1; a1 ¼ 3. Physi-
cally, for a rapid increase of the permeability along the vertical
the current remains asymptotically thin for any type of injection;
for a moderate vertical permeability gradient, an upper bound for
the volume increase of the current with time is necessary for the
aspect ratio of the current to remain small.
4. Experiments

The theoretical solution was tested against data from laboratory
experiments conducted in the Hydraulics Laboratory of the Univer-
sity of Parma with currents of fluids with Newtonian and
shear-thinning rheological behaviour with constant (a ¼ 1:0) and
time-varying flux (a ¼ 1:5 and 2.0). Air was the ambient fluid in
all cases. The experimental protocol and setup (shown in Fig. 4)
described here were earlier adopted by Longo et al. [32] to conduct
tests with shear-thinning fluids in a homogeneous porous
fication of glass beads used to reproduce increasing permeability along the vertical
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medium; their result complement the present set of experiments
and validate the model for x ¼ 1. Further experimental support
for homogeneous media and Newtonian fluids (n ¼ 1) is provided
by the work of Lyle et al. [6]. Here, no tests were conducted with
x < 1 or n > 1, as these cases are less common.

4.1. Experimental protocol and setup

The experiments were performed in a 90�-sector glass tank
filled with glass beads to create a porous medium with permeabil-
ity varying along the vertical. The continuous vertical gradient of
the permeability implicit in (1) was approximately reproduced in
the laboratory by superimposing a sequence of strata of beads,
each stratum having beads of uniform diameter. The link between
the theoretical parameters k0 and x and the geometry and proper-
ties of the experimental setting is illustrated in Appendix B. The
intruding fluid was injected through a quarter-cylinder volume of
radius�10 mm positioned vertically at one corner of the tank, hav-
ing permeable walls constructed with a brass net. The outflow sec-
tion of the plastic tube delivering the fluid was located near the
solid floor of the tank. While this arrangement resembles a point
source, the well-like structure obtained with the brass net favored
an injection distributed along the vertical. Two different syringe
pumps, with accuracies of 0.5% and 1% of the instantaneous dis-
charge, were used. The first pump was controlled with an analogue
electric signal to generate a time-increasing influx (a ¼ 1:5;2:0).
The lateral current profile was recorded continuously using a
high-resolution video camera, and the radial spreading was
recorded by a photo camera shooting from below through a mirror.
The images were processed to obtain a planar restitution and
detect the boundary of the intruding current, with an overall accu-
racy of 	1 mm. Six experiments were conducted with a mixture of
water and glycerol that was Newtonian in nature. Six additional
experiments were carried out using a suspension of Xanthan
gum in a mixture of water and glycerol that exhibited shear-thin-
ning behaviour. A set of eleven experiments were earlier per-
formed with shear-thinning and Newtonian fluids in a
homogeneous medium (x ¼ 1), as reported in Longo et al. [32].
Ink was added to the intruding fluid to increase the contrast and
facilitate the detection of the interface. The rheological parameters
of the intruding fluids were evaluated with two strain-controlled
rheometers at a temperature approximately equal to that mea-
sured at the end of each experiment (H ¼ 25 �C for the first six
tests and H ¼ 28 �C for the last six tests). The descriptive parame-
ters for each experiment are summarised in Table 1. Two videos
recorded for experiments 14 and 19 are also available in the
Supplementary Material.
Table 1
Parameter values used for all experiments. The superscript a indicates availability of a reco
pump that was built in the laboratory was used. All other experiments were conducted w
The porosity was assumed to be / ¼ 0:37. This is an average value for closed packed ballot
Bloom et al. [34] and Ribeiro et al. [35]. The rheological parameters were obtained by
experiments 22–27, for which the temperature was H ¼ 28 
C.

Exp. a d (mm) m (Pa sn) n

13 1.0 1.0–4.0 0.60 0.33
14a 1.5 1.0–4.0 0.60 0.33
15 2.0 1.0–4.0 0.60 0.33
19a 1.0 1.0–4.0 0.28 1.00
20 1.5 1.0–4.0 0.28 1.00
21 2.0 1.0–4.0 0.28 1.00
22b 1.0 1.0–4.0 0.67 0.42
23b 1.0 1.0–4.0 0.67 0.42
24b 1.0 1.0–4.0 0.67 0.42
25b 1.0 1.0–4.0 0.14 1.00
26b 1.0 1.0–4.0 0.14 1.00
27b 1.0 1.0–4.0 0.14 1.00
In examining the experimental profile, a correction was applied
to the raw data to consider the capillary rise and the meniscus at
the glass wall according to the methodology described in Longo
et al. [32]. A Particle Image Velocimetry analysis performed with
a macro-lens detected no motion of the glass beads in the entire
flow domain, ruling out dilatancy effects.

4.2. Experimental results

The scaled non-dimensional results for the current front posi-
tion (relative to an origin located at the corner of the tank) are plot-
ted with respect to time in log–log scale in Fig. 5(a) for all
experiments. The model fit on a linear scale is shown for experi-
ment 27 in Fig. 6. The experimental results collapse onto the theo-
retical lines, except at early time, indicating a satisfactory
prediction of the power of time F2 and pre-multiplicative factor
gN given by (14) and (21) for both constant (a ¼ 1) and increasing
(a ¼ 1:5;2) influx. Fig. 5(b) depicts the dimensionless thickness
profile at various times for a selected test with variable influx
(experiment 19). Fig. 5(c) presents the experimental versus theo-
retical thickness profile for all experiments and a single time value,
corresponding to the last available shot for each experiment. Both
figures demonstrate that the experimental results tend to collapse
onto the theoretical predictions of the similarity solution, with lar-
ger deviations near the origin and front end. These are confirmed
upon examining results for individual tests (see Fig. 7 for experi-
ment 13, and the Supplementary Material for all other experi-
ments). The relatively poor fit near the origin can be ascribed to
(i) boundary effects due to the finite-sized injection cylinder,
(ii) injection tube located near the bottom of the tank rather than
along the entire vertical edge, and (iii) neglecting the vertical
velocity, which is locally comparable to the horizontal velocity.
The effect of the finite size well are negligible given its small
radius. Local effects due to the position of the injection point are
relevant in the near field f < 0:2, as already observed in some of
the experiments shown in Fig. A.1 by Lyle et al. [6]; however the
arrangement adopted in the present experiments, featuring a
well-like structure, likely mitigates the discrepancies with the sim-
ilarity solution. We therefore surmise that the presence of vertical
Darcy velocities, that are neglected in the model, significantly con-
tributes to deviations from theoretical results near the injection
point. Near the front end of the current, deviations from the theory
are mainly due to the discretisation adopted in the experiments,
where the continuous permeability profile given by (1) is approx-
imated superimposing different layers of particles, each layer hav-
ing uniform diameter. The experimental result correspond more
closely to theory for the radius of propagation than for the profile
rded video as Supplementary Material. The superscript b indicates that a 1%-accuracy
ith a pump of 0.5% accuracy. Q 0 ¼ aQta�1 denotes the full-circle volumetric discharge.
ini, as measured in [6], also consistent with specific measurements by Aste et al. [33],
direct rheometric measurements at H ¼ 25 
C in the range of 0.1–5 s�1 except for

Dq (kg m�3) Q 0 (ml s�1) x k0 (10�9 m2)

1175 0.40 1.63 4.99
1175 0:078 � t1=2 1.63 3.47
1175 0:032 � t 1.63 4.57
1241 0.40 1.63 9.63
1241 0:06 � t1=2 1.63 8.14
1241 0:032 � t 1.63 9.87
1175 0.550 1.63 8.97
1175 0.677 1.63 9.37
1175 0.866 1.63 9.85
1241 0.535 1.63 8.43
1241 0.704 1.63 9.00
1241 0.888 1.63 9.51



Fig. 7. (a) Thickness profile of the current at time t ¼ 44 min for test 13. The thick line is the theoretical prediction, the dots are the experimental results, and the dashed lines
are the 95% confidence limits. The error bar on the l.h.s. is the experimental error in detecting the profile at the 95% confidence level. (b) The coefficient of variation of the
profile and the contributions of the individual parameters. Test 13, m ¼ 0:60	 3:5% Pa s�1; n ¼ 0:33	 3:5%; Dq ¼ 1175	 1% kg m�3; Q 0 ¼ 0:40	 0:5% ml s�1; / ¼
0:37	 1%; x ¼ 1:63	 4:3%, and k0 ¼ 4:99 � 10�9 	 4:8% m2.

Fig. 6. (a) The radius of the front end of the current as a function of time for test 27. The thick line is the theoretical prediction, the symbols are the experimental results, and
the dashed lines are the 95% confidence limits. The error bar representing the experimental error at 95% confidence level in detecting the front position is indicated for
comparison on the l.h.s. (b) The coefficient of variation of the radius and the contributions of the individual parameters as a function of time. Test 27, m ¼ 0:14	 3:5% Pa sn,
n ¼ 1:0	 3:5%; Dq ¼ 1241	 1:0% kg m�3; Q 0 ¼ 0:888	 1:0% ml s�1; a ¼ 1:0; / ¼ 0:37	 1%; x ¼ 1:63	 4:3%; k0 ¼ 9:51 � 10�9 	 4:8% m2.

Fig. 5. Experimental results (symbols) versus theoretical results (solid curves). (a) The scaled non-dimensional front position versus dimensionless time (one point of every
two is plotted). (b) Thickness profile at various times versus the reduced similarity variable for experiment 19 with time-increasing influx of a shear-thinning fluid. (c) The
experimental versus theoretical thickness profile for all experiments, indicating the profile measured at a time corresponding to the last available shot.
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because the current front was evaluated as the spatial average of
the current boundary in the images taken from below.

4.3. Uncertainty analysis

An uncertainty analysis was undertaken to quantify the agree-
ment between the theoretical and experimental values of the
radius rN and height h of the current. The generic model output i,
with i ¼ rN; h, is a function of the two independent variables r
and t and of model parameters j ¼ m;n;Dq;Q ;/;x; k0. Thus, the
total uncertainty in i was obtained by combining in quadrature
the contribution of the uncertainties in the parameters as

r2
i ¼

@h
@m

� �2

r2
m þ

@h
@n

� �2

r2
n þ � � � ; ð29Þ

where the r2 symbol denotes the variance, which is assumed to be an
estimate of the uncertainty. A standard deviation rj was attributed to
each model parameter using available information: a separate statis-
tical analysis was performed on the rheometric data to infer rm and
rn, while the manufacturer’s specifications were employed for the
diameter of the glass beads and the flow rate of the pumps used in
the experiments. A coefficient of variation equal to 1% was assumed
for the porosity and the density, whereas the uncertainties in x and
k0 were computed by assuming a coefficient of variation of 10% and
5% respectively for the minimum and maximum bead diameter
among those used, and equal to 10% for the total thickness of the
bead layers. This approach resulted in a coefficient of variation of
4.3% for x and 4.8% for k0. We further assumed that the acceleration
due to gravity and the parameter a were known with certainty.

Fig. 6(a) depicts, in dimensionless form, the theoretical and
experimental radius of the current as a function of time for test
27; the error bands at the 95% confidence limit, and the error bars
are also shown. The agreement between model predictions and
experimental results is almost perfect, except at early times, when
the experimental setup and injection process induced some discrep-
ancies. Fig. 6(b) illustrates the contributions to the coefficient of var-
iation of the radius deriving from the uncertainty in the parameters.
It is seen that the highest coefficient of variation is associated to n
and x, followed asymptotically by the reference permeability k0.

Fig. 7(a) presents a comparison of the theoretical and experi-
mental thickness profile at given time for test 13; the 95% confi-
dence limits and the error bars are shown. Because the difference
between the estimation of the experimental points and the theo-
retical profile contains zero, the experimental data and theoretical
profile can be considered statistically equal with a 95% level of con-
fidence. Fig. 7(b) presents the contributions of the uncertainties
associated with model parameters. The most relevant contribution
is due to the exponent x, which accounts for more than 50% of the
coefficient of variation of the thickness profile. This significant
result confirms that the spatial heterogeneity of the porous med-
ium is a crucial factor controlling the spreading of the current.

A similar uncertainty analysis was conducted for all tests listed
in Table 1; the Supplementary Material reports the comparison
between the experimental and theoretical thickness profile for all
tests. The agreement between the theoretical and experimental
results is largely satisfactory, except (for some experiments) near
the origin and front end, as noted earlier. The theoretical and
experimental results match more closely for slow currents than
for fast currents.

5. Conclusions

We theoretically and experimentally investigated the behaviour
of axisymmetric gravity currents of power-law fluids of rheological
index n in a porous medium with a continuous vertical permeabil-
ity variation described by the parameter x. The rate of propagation
of a current of volume V � ta and the appropriate scaling for its
shape were determined as functions of a; x, and n by using simi-
larity variables. Two critical values for the volume parameter,
ax ¼ 2n=ðnþ 1Þ and an ¼ xþ 2, govern the tendency of the time
exponents F2 and F3 of the radius and height of the gravity current
to increase or decrease with n and x; a third critical value al dic-
tates if the current accelerates or decelerates; a fourth critical value
a1 governs the asymptotic validity of the thin current approxima-
tion. The second, third and fourth values are distinct, unlike the
case of Newtonian gravity currents in uniform media. The physical
explanation of the current behaviour relies on the combined effects
of depth, radius and resistance to flow. Depth and radius are con-
strained by mass balance, while the flow resistance is modulated
by the spatial gradient of the current and by the average perme-
ability on the vertical. For example, the response of the current
to a shear-thickening fluid (n > 1) is a reduction of the average
spatial gradient with a counteracting effect represented by a
reduced thickness for x > 1 (or increased thickness for x < 1) or
a concurrent effect in the opposite case. The actual behaviour of
the current in terms of radius and height is best analyzed in dimen-
sional coordinates.

In the laboratory, the vertical gradient of the permeability was
reproduced by superimposing a sequence of uniform strata of glass
beads. The experimental results for constant- and variable-flux
gravity currents agree well with the theoretical predictions for both
the front position and current profile. Deviations from theory occur
near the origin and at the front end of the current. The former are
due to the assumption of negligible vertical velocity and to bound-
ary effects; the latter can be attributed to the discretisation,
adopted in the experiments, of the continuous permeability profile.

An analysis based on the actual uncertainties affecting problem
parameters indicated that the fluid behaviour index n and the per-
meability variation factor x have the greatest impact on results.

Results obtained show that the rheological nature of the intrud-
ing fluid and permeability variations significantly affect the radius
and profile of gravity-driven currents propagating in porous media.
In turn, the prediction of the extension and shape of the current for
an instantaneous or continuous injection is relevant in contamina-
tion problems and remediation efforts involving non-Newtonian
fluids. More complex and realistic patterns of spatial permeability
variations, as well as the behaviour of rheologically complex fluids
not adequately described by the power-law model, can be explored
based on these results.
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Appendix A. The special case a ¼ 3

In the special case a ¼ 3, the non-dimensional expression (10)
breaks down due to the absence of the characteristic time scale
defined in (9). In addition, a second natural velocity scale
ðQ=/Þ1=3 arises. An arbitrary time scale ~t� and a new spatial length
scale ~r� ¼ ðQ=/Þ1=3~t� are thus defined, and dimensionless variables
become ~T ¼ t=~t�; ~R ¼ r=~r�; ~RN ¼ rN=~r�; ~H ¼ h=~r�. In these new
variables, the problem is stated as

dr

F1

1
~R

@

@~R
~R~HF1

@ ~H

@~R

�����
�����
1=n�1

@ ~H

@~R

0
@

1
A ¼ @ ~H

@~T
; ðA:1Þ



Fig. A.1. Thickness profile for a ¼ 3; dr ¼ 0:2;1:0;5:0; n ¼ 0:5;1:0;1:5, and x ¼ 0:5;1:0;1:5.
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2p
Z ~RN

0

~H~Rd~R ¼ ~T3; ðA:2Þ

where dr ¼ v�= Q=/ð Þ1=3 is the ratio between the velocity scale in (9)
and the new velocity scale. Physically, dr represents the ratio
between the factors favouring the current spreading (density differ-
ence Dq, domain reference permeability k0, and reciprocal of fluid
consistency index m) and the source strength. Defining the self-
similar variable as g ¼ FF4

1
~R~T�F2 , with

F1 ¼
ðx� 1Þðnþ 1Þ þ 2n

2n
; F2 ¼

3xðnþ 1Þ þ 3� n
2½xðnþ 1Þ þ 2� ;

F4 ¼
n

xðnþ 1Þ þ 2
ðA:3Þ

and performing the same mathematical transformations as in the
general case, the height of the current becomes

~H ~R; ~T
� �

¼ F2F4
1 gF3

N
~T F3 wðfÞ; f ¼ g=gN ; ðA:4Þ

in which

F3 ¼
nþ 3

xðnþ 1Þ þ 2
; F5 ¼

2ðnþ 1Þ
ðx� 1Þðnþ 1Þ þ 2

ðA:5Þ

and the thickness profile w is the solution of the following nonlinear
o.d.e.:

dr fwF1 w0j j1=n�1
w0

� �0
þ F2f

2w0 � F3fw ¼ 0 ðA:6Þ

with wð1Þ ¼ 0. The second boundary condition needed for the
numerical integration of (A.6) is obtained in analogy with the gen-
eral case as:

w0ðf! 1Þ ¼ �a0b�b�1; a0 ¼
F2

drb
1=n�1 bF1 þ b�1

n

	 

" #nb

;

b ¼ 1
1� nð1� F1Þ

; ðA:7Þ
where � is a small quantity. Fig. A.1 depicts the thickness profile for
various values of the parameters dr; n; x. Graphical results for a
homogeneous medium (x ¼ 1), n ¼ 0:50;1:50, and dr ¼ 0:2;1;5
replace those shown in Fig. 9 of [8]. It is seen that an increase in
dr produces a decrease in the thickness profile and vice versa; the
impact of the actual value of dr is larger for shear-thickening than
for shear-thinning fluids.

For x ¼ 1, the factors simplify to F1 ¼ 1; F2 ¼ 1; F3 ¼ 1;
F4 ¼ n=ðnþ 3Þ, and F5 ¼ nþ 1 and the governing equations and

the boundary conditions reduce to the simpler counterparts
derived in Eqs. (31) and (A.8) of Di Federico et al. [8] for axisym-
metric non-Newtonian gravity currents in homogeneous porous
media. Note that the sign of the last term in Eq. (31) of [8] is
erroneous and should be changed to positive, thus becoming con-
sistent with the more general case represented by (A.6). For n ¼ 1,
novel results for Newtonian radial gravity currents flowing in
vertically graded media with volume increasing as time cubed
are derived. In this case F1 ¼ x; F2 ¼ ð3xþ 1Þ=½2ðxþ 1Þ�; F3 ¼
2=ðxþ 1Þ; F4 ¼ 1=½2ðxþ 1Þ�, and F5 ¼ 2=x. When comparing the
value of a1 defined in (28) with the present special case, it is seen
that the currents with a ¼ 3 are accelerated for x > 1, have a con-
stant front speed for x ¼ 1, and are decelerated for x < 1. The thin
current approximation is asymptotically valid only for x 6 1.

Appendix B. The parameters of vertical permeability variation

This Appendix illustrates the relationship between the theoret-
ical parameters of the power-law permeability variation (1) and
the discrete sequence of strata of beads with uniform diameter
used in the experiments. First, a preliminary evaluation of the
maximum height of the intruding current is performed for each
test, and the overall thickness of the porous medium D is conve-
niently adjusted to ensure that the advancing current is contained
within the porous medium. Then the diameter of the beads is
determined according to the following method. Taking the loga-
rithm of (1) yields
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logðkÞ ¼ logðk0Þ þ ðx� 1Þ logðz=r�Þ: ðB:1Þ

The length scale r� is equal to (see (9))

r� ¼ Q
/

� �1=ð3�aÞ ðKDqgÞ1=n

/

" #�a=ð3�aÞ

k�aðnþ1Þ=½2nð3�aÞ�
0 ; ðB:2Þ

hence results

logðkÞ ¼ 1þ ðx� 1Þaðnþ 1Þ
2nð3� aÞ

� �
logðk0Þ þ ðx� 1Þ logðz=cÞ; ðB:3Þ

where

c ¼ Q
/

� �1=ð3�aÞ ðKDqgÞ1=n

/

" #�a=ð3�aÞ

: ðB:4Þ

According to the Kozeny–Carman equation, the permeability of
a uniform stratum of beads with diameter d and porosity / is given

by k ¼ /3d2
=½180ð1� /Þ2�. Requiring that the permeability corre-

spondent to the minimum diameter of the beads d ¼ dmin is
reached at z ¼ dmin=2, and the permeability correspondent to the
maximum diameter of the beads d ¼ dmax is reached at z ¼ D, the
two unknowns x and k0 can be derived solving the following sys-
tem of equations

logðkminÞ ¼ 1þ ðx�1Þaðnþ1Þ
2nð3�aÞ

h i
logðk0Þ þ ðx� 1Þ logððdmin=2Þ=cÞ;

logðkmaxÞ ¼ 1þ ðx�1Þaðnþ1Þ
2nð3�aÞ

h i
logðk0Þ þ ðx� 1Þ logðD=cÞ;

8><
>:

ðB:5Þ

where kmin ¼ /3d2
min=½180ð1� /Þ2� and kmax ¼ /3d2

max=½180ð1� /Þ2�.
Subtracting the two equations results in

x ¼ 1þ logðkmin=kmaxÞ
logððdmin=2Þ=DÞ ; ðB:6Þ

in which x depends only on the diameters of the beads, the poros-
ity /, and D. The solution for k0 reveals that this parameter varies
with all other parameters controlling the spread of the intruding
current.

In the present experiments we selected dmin ¼ 1 mm, dmax ¼
4 mm, D ¼ 40 mm, / ¼ 0:37, obtaining x ¼ 1:63 and the
Fig. B.1. Vertical variation of the beads diameter.
corresponding variation of permeability with elevation. Equating
(1) with the Kozeny–Carman equation, the function d ¼ dðzÞ was
derived. The thickness of the intermediate layers was obtained
from the inverse of the latter function, computed at the available
commercial values of the beads diameter, as shown in Fig. B.1.
Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.advwatres.
2014.04.015.
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