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Abstract
Backflow phenomenon, as a consequence of hydraulic fracturing, is of considerable tech-
nical and environmental interest. Here, backflow of a non-Newtonian fluid from a disc-
shaped elastic fracture is studied theoretically and experimentally. The fracture is of con-
stant aperture h and the outlet section at constant pressure pe. We consider a shear-thinning
power-law fluid with flow behavior index n. Fracture walls are taken to react with a force
proportional to hλ, with λ a positive elasticity exponent; for λ = 1 linear elasticity holds.
Constant overload f0, acting on the fracture, is also embedded in the model. A transient
closed-form solution is derived for the (i) fracture aperture, (ii) pressure field, and (iii)
outflow rate. The particular case of a Newtonian fluid (n = 1) is explicitly provided. For
pe = 0 and f0 = 0, the residual aperture and outflow rate scale asymptotically with time
t as t−n/(n+λ+1) and t−(2n+λ+1)/(n+λ+1) respectively, thus generalizing literature results for
n = 1 and/or λ = 1. For non-zero exit pressure and/or overload, the fracture aperture
tends asymptotically to a constant value depending on λ, n, pe, f0, and other geometrical
and physical parameters. Results are provided in dimensionless and dimensional form in-
cluding the time to achieve a given percentage of fluid recovery. In addition, an example
application (with values of parameters derived from field scale applications) is included
to further characterize the influence of fluid rheology. Experimental tests are conducted
with Newtonian and shear-thinning fluids and different combinations of parameters to vali-
date the model. Experimental results match well the theoretical predictions, mostly with a
slight overestimation.

1 Introduction

Hydraulic fracturing is a technique in use since the 1940s to increase the productiv-
ity of petroleum reservoirs [Montgomery and Smith, 2010]; this technology is now widely
used not only in oil production and gas extraction from tight shales, but also in enhanced
geothermal systems and carbon sequestration [Fairhurst, 2013]. Typically, hydraulic frac-
turing involves drilling of a horizontal wellbore at high depths, and the stimulation of se-
lected zones surrounding the wellbore by injecting a fracturing fluid into the rock forma-
tion. Injecting pressure is higher than the fracture initiation pressure; the access to each
selected zone is ensured by pressurizing a wellbore interval, previously isolated by means
of retrievable plugs [Nolen-Hoeksema, 2013]. Due to the formation breakdown, a network
of fractures and cracks develops depending on the stress state of the formation (for a re-
view see Britt [2012]). During the first injection phase, the fracturing fluid does not usu-
ally contain a gelling agent, which is added to its formulation once the development of
fractures and cracks has started; the scope of the gelling agent is to increase the fluid vis-
cosity, forming hydrogels which can carry the proppant [Kreipl and Kreipl, 2017]. The
scope of the proppant, usually consisting of sand particles, is to keep the fractures and
cracks partially open, allowing at a later stage the flow of gas and oil through the frac-
tured rock and towards the wellbore. In some instances, no proppant is employed as acid
additives render the walls of the fractures rough, allowing only a partial closure after in-
jection has ceased [Bǎzant et al., 2014].

After creating a network of fractures and cracks in the selected zone, the injection
stops, the pressure in the stimulated zone drops, and the elastic relaxation of fluid-driven
cracks drives the hydraulic fracturing fluid back towards the wellbore. This phenomenon
is known as backflow, or flowback, and actually involves two distinct phases (see Osiptov
[2017], also for a synthetic review): first, the actual backflow of fracturing fluid from the
fracture system while the fractures are closing, and second, the displacement of the frac-
turing fluid by advancing hydrocarbons in closed or partially closed fractures. The actual
volume and percentage of fluid recovered [Birdsell et al., 2015] depends on the percent-
age permanently sequestered in the rock matrix and on the extent of losses as an effect
of leak-off in the formation, a very complex phenomenon happening on dual time scales
[Wang et al., 2018]. Backflow is also a way of determining properties of existing fractures

–2–



Manuscript accepted in Water Resources Research, October 2019

via inverse modeling [Clarkson et al., 2016], capturing their dominant features even using
sparse monitoring networks [Dong et al., 2019].

Given the scientific and technical interest towards the backflow phenomenon, sev-
eral authors focused on its modeling; the elastic relaxation of fluid driven cracks and the
resulting backflow has been studied by Lai et al. [2016]: the aperture of radial cracks was
found to exhibit a universal, negative power-law dependency on time of exponent −1/3
during backflow. The same scaling exponent was obtained analytically for the late-time
behaviour of fracture aperture by Dana et al. [2018], who developed a conceptual model
for the relaxation of a single elastic fracture of planar geometry and of hierarchical frac-
ture systems consisting of a generic number of channel orders, each bifurcating from the
previous one. Consequently, their model predicts an asymptotic −4/3 time scaling for the
flow rate exiting the fracture system. The model was further generalized by Dana et al.
[2019], allowing for variations in fracture length and elasticity among different orders of
fractures, but the time scaling exponent did not change significantly. A second class of
approaches represents explicitly the backflow phenomenon via detailed numerical models
[de Borst, 2017; Jia et al., 2019; Medina et al., 2018]. Detailed laboratory experiments on
proppant backflow were conducted by McLennan et al. [2015], demonstrating differences
in behaviour between the planar and the radial geometry.

All these contributions adopt a Newtonian rheology to represent the fraction of hy-
draulic fracturing fluid returning to the surface, and needing treatment and/or storage.
Yet fluids used in hydraulic fracturing have typically a complex rheology, as this allows
achieving objectives which are contradictory for Newtonian fluids, i.e. [Barbati et al.,
2016]: i) low-friction pressure-drop along the wellbore; ii) suspend proppant in both dy-
namic and static conditions; iii) exhibit low-leak-off into the formation; iv) flow back eas-
ily to the surface without interfering with gas or oil flow; v) adapt to variable temperatures
and chemical environments in subsurface domains. The extension of existing conceptu-
alizations and models of the different phases of fracKing technology to non-Newtonian
rheology is ongoing in the literature: Garagash [2006] and Mikhailov et al. [2011] de-
rived solutions for fracture growth driven by a power-law fluid; Lakhtychkin et al. [2012]
modeled transport of two proppant-laden immiscible non-Newtonian fluids through an ex-
panding fracture; scaling laws for hydraulic fractures driven by a power-law fluid in homo-
geneous anisotropic rocks were derived by Dontsov [2019]; further relevant references are
cited in Section 5.2 of Osiptov [2017]. In particular, as the rheology of fracturing fluids
has been approximately described as power-law in many applications [Detournay, 2016;
Montgomery and Smith, 2019], it seems timely to investigate the influence of such a con-
stitutive relationship on the backflow phenomenon.

The purposes of this study are: i) to derive a conceptual model of backflow for a
non-Newtonian power-law fluid, which represents more realistically the nature of fractur-
ing fluids; ii) to explore a drainage mechanism characterized by a convergent flow, where
the external pressure condition is imposed in a restricted zone, such that the resulting flow
field geometry is close to axisymmetric and can be represented as such with no appre-
ciable loss of accuracy; this is the case for a radial fracture, a common geometry in the
fracking literature and practice [Cheng and Bunger, 2019]; iii) add realism and complex-
ity to the aforementioned model, considering the additional influence of an overload and a
nonlinear elastic behaviour of the fracture walls; iv) support the theoretical findings by an
extensive set of experiments, realized with an ad-hoc designed apparatus.

The organization of the paper is as follows: Section 2 introduces the conceptual
model and its solution in dimensionless form; results for a Newtonian fluid constitute a
particular case and are presented in Appendix A. Section 3 describes the experimental
setup and the laboratory tests performed, and discusses their agreement with theoretical
findings. An example application, with real data originating from the fracking literature, is
presented and discussed in Section 4. Section 5 closes the paper, presenting perspectives
for future works.
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Figure 1. Layout of a radial fracture of internal radius ri and external radius re; the fracture wall is con-
strained by elastic forces increasing with the aperture h(t).

2 Model statement

2.1 Governing equations

We consider an annular circular fracture [Shi and Shen, 2019] as the space of inter-
nal radius ri and external radius re along the radial coordinate r , and variable height h(t)
(fracture aperture in the z direction) between two disk-shaped parallel rigid plates, so that
their deformation is independent of x; the lower plate is immobile, while the upper plate
behaves as an elastic foundation (an array of springs) and reacts against any variation of
the aperture by applying a pressure to the fluid. The fracture lies in a vertical plane per-
pendicular to a horizontal borehole, or, less commonly, in a horizontal plane perpendicular
to a vertical borehole. At time t = 0, the pressure at the outlet r = ri of a fluid-filled
fracture starts acting, the elastic response of the upper plate squeezes the fluid and forces
a backflow, with fluid exiting through the outlet section as a consequence of a no-flow
boundary condition at re. The outlet pressure represents the external condition against
which the fluid drains out of the fracture, and may be identified with either the constant
pressure in the injection borehole or the equilibrium pressure established after pumping
ceases. A schematic representation of the fracture is shown in Figure 1. To avoid a singu-
larity at the origin r = 0, the outlet pressure is imposed at the radial coordinate r = ri , 0.
As long as ri � re, the effect of the inner cylinder of fluid on the overall dynamics of
the flow is negligible. Under the same approximation, the volume of fluid within the frac-
ture at any time is Vf ≈ πr2

e h and the flow rate exiting the fracture through the outlet, or
outflow rate, is q = −dVf /dt ≈ πr2

edh/dt.

Gravity effects are absent in horizontal fractures and negligible when compared to
pressure gradients for fractures lying in any other plane [Abbasi et al., 2012; Shi and Shen,
2019; Cheng and Bunger, 2019]. As to the flow conditions, the Reynolds number is low
enough to ensure the flow is viscous and inertial terms are negligible. Further, under the
assumption of a thin fracture (h � re) the lubrication theory is valid. Thus for a power-
law fluid of rheological equation τzr = −µ(∂u/∂z)n in simple shear flow (with τzr shear
stress, u velocity, µ consistency index and n flow behavior index; for n = 1, µ is the dy-
namic viscosity), the velocity profile as a function of the pressure gradient is

u(r, z, t) = −
n

2 n+1
n (n + 1)

1
µ

1
n

����∂p
∂r

���� 1
n −1

∂p
∂r

(
h

n+1
n − |2z − h|

n+1
n

)
, (1)

where the pressure gradient ∂p/∂r is taken to be independent of z; this velocity profile
represents the velocity field for Poiseuille convergent/divergent flow of a power-law fluid,
is valid at any radius r and takes a shape depending on n; the profile becomes parabolic
for a Newtonian fluid (n = 1). The mass balance equation for an incompressible fluid
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reads in radial coordinates
∂w

∂z
+

1
r
∂

∂r
(ru) = 0, (2)

where w is the velocity component along z. Substituting eq. (1) into eq. (2) and integrat-
ing with respect to z from 0 to h under a hydrostatic pressure distribution yields

dh(t)
dt
=

n

2 n+1
n (2n + 1)µ 1

n

1
r
∂

∂r

(
rh

2n+1
n

����∂p
∂r

���� 1
n −1

∂p
∂r

)
, (3)

where the following boundary conditions for the vertical velocity w(r, z, t)

w(r,0, t) = 0, w(r, h, t) = d h/d t (4)

have been used, and the condition of rigid plates h = h(t) taken into account.

Finally, the dynamic boundary condition implies the upper plate reacts with a force
proportional to hλ, with Ê a proportionality coefficient of dimensions [ML−λ+1T−2] and
λ a positive dimensionless constant; for λ ≶ 1, this reaction force mimics a softening or
stiffening array of springs, respectively, and for λ = 1 is equivalent to a linear array of
springs (an elastic foundation, or Winkler soil in geotechnics; in this case Ê denotes the
effective spring constant of the support, of dimensions [ML−2T−2]); in turn, Ê = E/l
for a thin elastic layer, with E being the Young modulus and l the layer thickness. The
effect of an overload pressure acting uniformly on the fracture and of resultant f0 is easily
included. The force balance on the fracture among the fluid pressure, the plate reaction
and the overload force yields

2π
∫ re

ri

rp(r, t)dr = Êπr2
e hλ(t) + f0. (5)

The additional initial and boundary conditions are

h(0) = h0,
∂p
∂r

����
re ,t

= 0, p(ri, t) = pe, (6)

where h0 is the initial aperture and pe is the outlet pressure. These conditions are equiva-
lent to an impermeable boundary at r = re and to a fixed outlet pressure near the origin.

2.2 Dimensionless formulation

We define the pressure and time scales as

pc =
Êhλ0

2
, tc =

(
µ

Ê

) 1
n 2 1

n (2re)
n+1
n (2n + 1)

nh
n+λ+1

n

0

. (7)

This allows defining the following dimensionless quantities

R = r/re, H = h/h0, T = t/tc, V = Vf /(r2
e h0), Q = (qtc)/(r2

e h0),

P = (p − pe)/pc, Pe = pe/(2pc), F0 = f0/(2πr2
e pc). (8)

The governing equations (3) and (5) then become

1
H

2n+1
n

dH
dT
=

1
R
∂

∂R

(
R

����∂P
∂R

���� 1
n −1

∂P
∂R

)
, (9)∫ 1

Ri

RP(R,T)dR = Hλ(T) − Pe + F0, (10)

while the boundary conditions become

H(0) = 1,
∂P(R,T)
∂R

����
1,T
= 0, P(Ri,T) = 0, (11)

where Ri = ri/re.
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2.3 Solution

As H = H(T), defining the auxiliary function

G(T) =
1

H
2n+1
n

dH
dT

, (12)

eq. (9) becomes
1
R
∂

∂R

(
R

����∂P
∂R

���� 1
n −1

∂P
∂R

)
= G(T). (13)

Solving eq. (13) with the second and third boundary conditions in eq. (11) yields

P(R,T) = [−G(T)]n
1

2n(1 − n)

[
y1−n

2F1

(
1 − n

2
,−n;

3 − n
2

; y2
)] ����R

Ri

, (14)

where the function G(T) is negative in backflow, for a generic function f (y) the operator
f |H1

H2
≡ f (H1) − f (H2), and 2F1 (a, b; c; ς) is the hypergeometric function of parameters

a, b, c and argument ς. In the sequel, only shear-thinning fluids (n < 1) will be considered,
as the previous expression is singular for a Newtonian fluid (n = 1); results for Newtonian
fluids are reported in Appendix A.

Introducing eq. (14) and eq. (12) into eq. (10) yields a nonlinear ordinary differen-
tial equation

dH
dT
+

1
a

1
n

H
2n+1
n

(
Hλ − Pe + F0

) 1
n
= 0, (15)

where the following coefficient a was obtained integrating the radially varying part of the
pressure distribution given by eq. (14) with the help of Mathematica

a =
Γ

(
1 − n

2

)
2n+2


πn(n + 1) csc(πn)

Γ(1 − n)Γ
(

n + 5
2

) − R3−n
i 2F̃1

(
1 − n

2
,−n;

5 − n
2

; R2
i

) −(
1 − R2

i

)
B

(
R2
i ,

1 − n
2

,n + 1
)

2n+2 , (16)

in which Γ(·) is the gamma function, csc(·) = 1/sin(·) is the cosecant function, B(·, ·, ·) is
the incomplete beta function [Gradshteyn and Ryzhik, 2014] and 2F̃1(·, ·; ·; ·) is the regular-
ized hypergeometric function [Weisstein, 2019].

2.3.1 Null exit pressure and overload

For Pe = 0, F0 = 0 and ∂P/∂R > 0, eq. (15) admits the following solution for the
fracture aperture

H(T) =
[
1 +
(1 + n + λ)

na1/n T
]−n/(1+n+λ)

, (17)

while the pressure reads

P(R,Ri,H(T)) =
Hλ(T)

2n(1 − n)a

[
y1−n

2F1

(
1 − n

2
,−n;

3 − n
2

; y2
)] ����R

Ri

. (18)

The late-time (T � 1) approximation of eq. (17) shows a T−n/(n+λ+1) scaling for the
fracture aperture (see Appendix B). For a Newtonian fluid (n = 1) the time scaling expo-
nent reduces to −1/(λ + 2), as shown by eq. (A.6) in Appendix A. For a linearly elastic
wall (λ = 1), the exponent reduces to −1/3, consistently with eq. (2.17a) of Dana et al.
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[2018], obtained for a planar fracture. Remarkably, a −1/3 late time scaling for the aper-
ture of a radial fracture was also obtained in backflow by Lai et al. [2016] upon balancing
the viscous stresses in the fluid and the elastic stresses applied on the crack surfaces; the
result was also confirmed experimentally by the same authors.

The dimensionless fracture aperture is depicted as a function of time in Figure 2a
for different values of the fluid behavior index n and fracture wall constant λ, showing the
late-time scaling; it is seen that a shear-thinning behaviour of the fluid implies a larger
residual aperture than the Newtonian, more so for smaller values of n. It is also noted
that values of λ larger than 1 (a stiffening fracture wall) imply a sharper decrease of the
fracture aperture, and pressure within, with time; on the contrary, λ values lower than 1
(a softening fracture wall) cause the fracture to remain open for a longer time; the linear
wall behaviour (λ = 1) is intermediate between these two cases. Figure 2b–c illustrates, at
different times, dimensionless pressure profiles for a very shear-thinning fluid and a New-
tonian one; for both fluids, the dimensionless pressure decreases asymptotically with time,
faster for the Newtonian than for the shear-thinning fluid. When pressure curves for both
fluids are rescaled by the asymptotic time pressure distribution, there is a tendency to-
wards a universal curve, see Figure B.1 in Appendix B; the tendency is much faster for
the shear-thinning fluid than for the Newtonian one.

2.3.2 Positive difference between exit pressure and overload

If Pe−F0 > 0 and ∂P/∂R > 0, a solution is obtained in implicit form for the fracture
aperture H as

T =
na1/n

(1 + n + λ)

[
1

y(1+n+λ)/n
2F1

(
1
n
,
1 + n + λ

nλ
;
(1 + λ)(n + 1)

nλ
;

Pe − F0

yλ

)] ����H
1
, (19)

and the pressure is computed as

P(R,Ri,H(T)) =
Hλ(T) − Pe + F0

2n(1 − n)a

[
y1−n

2F1

(
1 − n

2
,−n;

3 − n
2

; y2
)] ����R

Ri

. (20)

For a Newtonian fluid, equations (19-20) again become singular and a separate derivation,
reported in Appendix A, is required to obtain the aperture and pressure behavior. Early
and late times approximations of eq. (20) depend on the specific values of parameters in-
volved, and are left for future studies.

Figure 3a shows the time decay of the aperture H for for Pe−F0 = 0.1, different val-
ues of the fluid behaviour index n and λ = 1. For n = 0.3 the curves for λ = 0.8 − 1.2 are
also shown. The dimensionless aperture tends asymptotically to (Pe−F0)

1/λ irrespective of
the value of fluid behaviour index n. The duration of the transient is inversely proportional
to n; this is so because of the high apparent viscosity of shear-thinning fluids at low shear
rates.

Figure 3b–e shows the dimensionless pressure profiles along the fracture radius for
a linearly elastic fracture wall (λ = 1). For small dimensionless time T , the pressure for a
shear-thinning fluid is lower than for a Newtonian, while for large T the reverse is true.

2.4 Drainage time

Important outcomes of the present model are the residual volume of fluid within the
fracture and the outflow rate. The dimensionless volume of fluid is equal to V = πH and
the dimensionless outflow rate is equal to Q = −πdH/dT or

Q = π
1

a
1
n

H
2n+1
n

(
Hλ − Pe + F0

) 1
n
. (21)

Figure 4a shows the outflow rate as a function of time for varying n and zero exit pressure
Pe and overload F0. In this case, the asymptotic behaviour of the outflow rate (21) shows
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Figure 2. a) Dimensionless fracture aperture as a function of time for outlet pressure Pe = 0, overload
F0 = 0, and different values of flow behaviour index n and fracture wall constant λ. Dashed, continuous and
dotted lines refer to λ = 0.8,1,1.2, respectively. Dimensionless pressure profiles at different times for outlet
pressure Pe = 0, overload F0 = 0, λ = 1 and for b) n = 0.3, and c) n = 1.
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Figure 3. a) Dimensionless fracture aperture as a function of time, for an assigned difference between
dimensionless outlet pressure and overload Pe − F0 = 0.1, and different values of flow behaviour index n.
Dashed, continuous and dotted lines refer to λ = 0.8,1,1.2. Pressure profiles for Pe − F0 = 0.1, λ = 1 (linearly
elastic fracture wall) and different values of flow behaviour index n at time b) T = 0.1, c) T = 1, d) T = 10 and
e) T = 100.
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Figure 4. a) Outflow rate as a function of time for outlet pressure Pe = 0, overload F0 = 0, λ = 1, and
different values of flow behaviour index n. b) The time T90 (continuous lines) and T99 (dashed lines) required
to drain 90% and 99%of the drainable volume, respectively, as a function of n, for λ = 1, F0 = 0, and
Pe = 0,0.1,0.2.

a negative scaling with time of exponent −(2n + λ + 1)/(n + λ + 1), which reduces to
−2(n+1)/(n+2) for non-Newtonian fluid and linear elastic wall (λ = 1), to −(3+λ)/(2+λ)
for Newtonian fluid (n = 1), and to −4/3 for n = 1 and λ = 1 [Dana et al., 2018].

Defining TY as the time required to reduce the volume of fluid to (100 − Y )% of the
total drainable volume, one has for Pe = 0 and F0 = 0

TY =
na1/n

1 + n + λ

[( 100-Y
100 

)−(1+n+λ)/n
− 1

]
, (22)

and, for the general case,

TY =
na1/n

(1 + n + λ)

[
1

y(1+n+λ)/n
2F1

(
1
n
,
1 + n + λ

nλ
;
(1 + λ)(n + 1)

nλ
;

Pe − F0

yλ

)] ����b
1
, (23)

where
b = (Pe − F0)

1/λ +
100-Y
100 

[
1 − (Pe − F0)

1/λ
]
. (24)

Figure 4b shows the dimensionless times needed to drain 90% and 99% of the fluid, T90
and T99, for varying n and Pe. It is seen that the dimensionless time required to achieve a
certain recovery markedly decreases with increasing flow behaviour index n and decreases
with increasing values of Pe.
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Figure 5. Experimental apparatus to reproduce the backflow phenomenon. a) Overview; b) sealing system;
c) the system ready for the test.

3 Experiments

Validation of theoretical results has required the set up of a series of experiments
conducted in the Hydraulic Laboratory of Parma University. A plate of Aluminium 25 ×
25 cm2 and 2.5 cm thick was machined with a CNC tool in order to carve a cylinder with
a square 20 × 20 cm2 cross-section. A plate (the piston) was machined with a 19.9 ×
19.9 cm2 cross-section, and sealing was guaranteed by an o-ring in neoprene with a 6 mm
diameter. The square shape approximates fairly well the radial geometry described in Sec-
tion 3, by assuming ri = 11.2 cm (the equivalent radius to obtain the same area of the sur-
face of the plate), and ri = 0.25 cm, the radius of the the central entry/exit hole. To obtain
a force (acting on the fracture upper plate) proportional to the aperture (λ = 1), the weight
of the plate was counter-balanced with a cable, a pulley and a counter-weight, and by tak-
ing advantage of the elastic response of the neoprene o-ring. The position of the plate was
measured with three dial indicators with a resolution of 0.01 mm, with the plunger po-
sitioned at the vertices of an equilateral triangle. The initial set up required levelling the
plate and the cylinder with an electronic spirit level. For some experiments, pressure was
measured with a Honeywell 420DP differential pressure transducer (full scale 1000 Pa),
with a pressure tap at R = 4 cm; the second port was at atmospheric pressure.

Figure 5 shows an exploded view of the apparatus, the details of the sealing, and a
photo of the assembly ready for a test.

The elastic response was measured by increasing in steps the pressure of the fluid
in the fracture (we used a calibrator Druck DPI601 20 kPa full-scale, using air as fluid)
and reading the three dial indicators. Figure 6a shows the typical pressure-deformation
diagram, which is fairly linear in the range of calibration. The fracture was first filled
with fluid, using a small tank positioned at ≈ 100 cm over the fracture and connected
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Figure 6. a) Typical experimental elastic response of the system. The symbols are the readings of the three
dial indicators, the line is the interpolation. b) Experimental response of the system for two different tests
with the same Newtonian fluid. Test 3 is shown with red crosses, test 4 is shown with blue open squares, see
Table 1

with a silicon pipe to the inlet/outlet fitting. This operation required an open vent in or-
der to permit the fluid flow and eliminate all the air from the hydraulic circuit and the
fracture. During filling operations, the plate lifted up and the dial indicators showed the
vertical movement. The filling was considered complete when the needles of the dials did
not show further movements. Then the video record (with a video camera full HD Canon
Legria HF 20, 1980 × 1080 pixels, 25 frames per second) was activated, with the panel
of the three dial indicators in the field of view, and the silicon pipe was cut with scissors
near the fitting. Backflow was considered exhausted if the needles of the indicators were
at rest. The video frames were post processed to extract the time series of the readings of
the dial indicators.

The experimental fluid was obtained by mixing pure glycerol and water, for tests
with a Newtonian fluid, and glycerol, water and Xanthan Gum, for tests with non-Newtonian
power-law fluid. The mass density was measured with a pycnometer, the temperature with
an infrared thermometer having an accuracy of 0.5 ◦C. The rheological parameters were
measured with a Ubbeholde viscometer, for the Newtonian fluids, and in a parallel-plate
rheometer by Anton Paar (dynamic shear rheometer TwinDrive), kept at the same tem-
perature of the experiments, for the non-Newtonian mixtures. The rheological parameters
of the power-law fluid were estimated according to the techniques detailed in Longo et al.
[2013, 2015]; Lauriola et al. [2018].

3.1 Uncertainty quantification

The absolute uncertainty of the dial indicators was 1/100 mm, while the time un-
certainty was taken to be equal to 1/50 s (half frame interval). We also assumed an un-
certainty ∆n/n ≤ 4% and ∆ µ/µ ≤ 6% in measuring the fluid behaviour index and the
consistency index, including the effects of a thermal shift between the experimental con-
ditions and the rheometer measurements. Mass density was estimated with an absolute
uncertainty of 10−3 g cm−3, hence ∆ ρ/ρ ≤ 0.1%. The error in determining the elastic re-
sponse of the neoprene was ∆Ê/Ê ≤ 5% and the uncertainty in determining the exponent
λ is ∆λ/λ ≤ 4.5%. Further sources of errors are the friction of the pulley and a reduction
of the elasticity of the neoprene o-ring if it remains under compression for long time. The
uncertainty in pressure measurement was ∆p/p ≤ 0.5%.
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Expt. n µ Θ ρ h0 pe λ Ê f0
(Pa sn) ( ◦C) (g cm−3) (mm) (Pa) (Pam−λ) (N)

×106

1 1 0.029 23.2 1.192 1.07 0 1 6.94 19.6
2 1 0.029 23.2 1.192 1.11 0 1 6.94 0
3 1 0.12 22 1.226 0.91 0 1 6.94 111.2
4 1 0.12 22 1.226 0.94 0 1 6.94 111.2
5 1 0.119 22.5 1.226 1.18 750 1 6.94 0
6 1 0.119 22.5 1.226 1.13 2190 1 6.94 0
7 1 0.119 22.5 1.226 1.1 2540 1 6.94 0
8 1 0.119 22.5 1.226 1 4740 1 6.94 0

9 0.44 3.5 23.2 1.196 1.32 0 1 4.88 0
10 0.7 0.22 22.2 1.196 0.9 0 1 6.94 0
11 0.7 0.22 22.2 1.196 1.03 0 1 6.94 0
12 0.44 3.5 23.6 1.196 1.2 3350 1 4.88 0

Table 1. List of tests performed and corresponding parameters.

3.2 Comparison with model prediction

Twelve tests were conducted with a variety of parameters combinations, eight with
Newtonian and four with shear-thinning fluids; the fracture apertures ranged from 0.90 to
1.20 mm; five tests had a nonzero exit pressure, with values ranging from 750 to 4740 kPa;
two different values of the elastic constant Ê were employed; in three tests, an overload
was present. The parameters of all tests performed are listed in Table 1. The repeatability
of the experiments was fairly good, see Figure 6b showing the time series of the fracture
aperture h for two tests conducted in identical conditions with a Newtonian fluid.

Figure 7a shows the experimental data and the theoretical curves for dimensionless
aperture H as a function of dimensionless time T for Newtonian fluids. Figure 7b does so
for non-Newtonian fluids. It is seen that experimental and theoretical results match fairly
well for all combinations of parameters tested, with a prevailing tendency of the theoreti-
cal curve to slightly underestimate experimental results. No appreciable differences in ac-
curacy are found between the Newtonian and non-Newtonian cases, nor between the zero
and non-zero exit pressure cases.

Figure 8 shows the comparison of dimensional pressure decay between experiments
and theory for two experiments with Newtonian and non-Newtonian fluids; similar curves
are found for all other tests. The theoretical predictions capture the experimental behav-
ior in the whole time range of the experiments (slightly more than two minutes) except for
very early times, smaller or equal than 5 seconds, when the theoretical curves underesti-
mate experimental results.

4 Application

In this Section, we compare results for a non-Newtonian and a Newtonian fluid in
a real scale application, to assess the impact of deviations from the Newtonian behaviour
on key output of interest. The comparison is performed for dimensional quantities as the
time scale depends on the fluid rheological index, as it consistently happens for power-law
fluids. To this end, we consider a radial fracture of external radius re = 3 m and internal
radius ri = 0.1 m, initial aperture h0 = 10−4 m, with pressure at the inner ring pe = 0
and no overload, f0 = 0. The fracture wall is taken to be linearly elastic (λ = 1) with a
spring constant Ê = E/l = 109 Pam−1, evaluated upon taking the rock Young’s modulus
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Figure 7. a) Experimental results for Newtonian fluid; parameters are listed in Table 1. Symbols are the
experimental data, curves are the theory. Expts. 1-4 are with zero exit pressure, Expts. 5-8 are with non zero
exit pressure and are translated of one unit along the vertical for a better visualization. b) Experimental re-
sults for non-Newtonian shear-thinning fluid. Experimental parameters are listed in Table 1. Symbols are the
experimental data, curves are the theory

Figure 8. Pressure decay over time for two tests. Squares refer to Exp. 6, circles refer to Exp. 12, curves
are the theoretical predictions.
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Figure 9. a) Height of the fracture and b) outflowflow rate as a function of the time for fluids with
n = 1,0.7,0.5. c) Pressure distribution along the fracture radius at different times for Newtonian fluid
with n = 1, d) power-law fluid with n = 0.7, and e) power-law fluid with n = 0.5.

E ' 3 · 109 Pa [Cheng and Bunger, 2019] and an elastic wall thickness l ' 3 m, of the
order of the fracture radius, which in turn is typically of the order of the fracture spacing.
The fracture behaviour is compared for three fluids; i) water, with n = 1 and a dynamic
viscosity µw = 8.9 · 10−4 Pa s [Shi and Shen, 2019], and ii) two non-Newtonian fluids with
n = 0.7 and n = 0.5 and with apparent viscosity equal to that of the Newtonian fluid at an
appropriate reference shear rate [see, e.g. Adachi and Detournay, 2002; Garagash, 2006].
The latter is the space-time-average value of Ûγ(z,r, t), computed as

Ûγ =
2

h∆t(r2
e − r2

i )

∫ ∆t

0

∫ re

ri

∫ h

0
r Ûγ(z,r, t) dz dr dt, (25)

where ∆t is the time interval of interest. Then, the consistency index of the non-Newtonian
fluids is computed as µ = µw

(
Ûγ
)1−n

. For the present case study we assume ∆t = 1800 s,
hence Ûγ ≈ 90 s−1, so µ = 3.4 · 10−3 Pa s0.7 and µ = 8.4 · 10−3 Pa s0.5 for n = 0.7 and 0.5,
respectively. Figure 9a depicts the time evolution of the fracture aperture for the three dif-
ferent fluids, showing a faster decay for shear-thinning fluids. The time requested to halve
the initial aperture is less than 1 minute for n = 0.5 and greater than 3 minutes for n = 1.

Figure 9b shows the outflow rate for the three different fluids; the outflow values
increase with decreasing flow behavior index n at early times; the reverse is true for late
times. In this respect, shear-thinning fluids overcome many of the negative effects due to
the convergent flow geometry, implying increasing fluxes and shear rates for r → ri; for
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Newtonian fluids, the geometry of the flow field induces a high shear stress and pressure
gradient near the origin.

Figure 9c–e show the pressure distribution at different times for the three fluids. The
pressure gradient is very high near the origin, more so for the Newtonian fluid; this im-
plies a relevant influence of the drain diameter ri on the overall dynamics. The pressure
gradient in the radial direction is more homogeneous for shear-thinning than for New-
tonian fluids, as a consequence of the reduced apparent viscosity of the former near the
drain, an effect which counterbalances the high values of shear rates.

We notice that real fractures are rarely parallel and positioned in a regular pattern,
so numerical results obtained should be considered as an indication of the order of mag-
nitude of outputs in real fractured media, and as a first step for a simplified conceptual
model. Modeling the complex network of real fractures, possibly with bifurcations and
three-dimensional changes due to anisotropy in the base rock and to the variability of the
stress field, is out of the scope of the present model.

5 Conclusions

A conceptual model for non-Newtonian backflow from a disc-shaped fracture has
been presented in this work. The model is valid for a shear-thinning power-law fluid, char-
acterized rheologically by two parameters, consistency index m and rehological index n,
and takes into account the linear/nonlinear elasticity of the fracture walls via an elastic-
ity exponent λ and a distributed overload f0. Results for the Newtonian case (n = 1)
were also derived for comparison. Experimental tests were conducted with Newtonian and
shear-thinning fluids and different combinations of parameters to validate the model. An
example application was developed with field values of parameters to investigate the im-
pact of the fluid nature on key problem outputs. Our results lead to the following main
conclusions:

• Non-Newtonian/Newtonian backflow in radial geometry is amenable to an analytical
solution in dimensionless form describing: i) the decrease over time of the fracture
aperture and pressure, ii) the spatial pressure decrease towards the inner fracture
radius, and iii) the outflow rate and time required to reduce the fracture volume
to a given percentage of its initial value. For zero exit pressure and no overload,
the fracture aperture exhibits a time scaling exponent equal to −n/(n + λ + 1)
at late times; similarly, the outflow rate shows an asymptotic scaling of exponent
−(2n+λ+1)/(n+λ+1). Earlier literature results of experimental and theoretical na-
ture are recovered as special cases for n = 1 and/or λ = 1. For a positive difference
between the exit pressure Pe and the overload F0, there is no negative power scal-
ing with time; the fracture aperture tends asymptotically to (Pe − F0)

1/λ irrespective
of the n value, while its decrease over time markedly depends on n and λ, high-
lighting the importance of an accurate estimation of these two parameters. Smaller
values of n (a more shear-thinning fluid) imply a delayed closure of the fracture,
while smaller values of λ (a more yielding wall) entail a smaller residual aperture.
The dimensionless pressure within the fracture decreases with time more gradu-
ally for Newtonian than shear-thinning fluids; correspondingly, the dimensionless
time required to achieve a given fluid recovery decreases as the fluid approaches the
Newtonian behavior.

• Experimental tests are in good agreement with theoretical predictions; the latter
mostly underestimate experimental results, presumably as a consequence of the
slight difference between the geometry of the experimental fracture and the theo-
retical model. However, the transient parallel plate model with elastic walls seems
to capture the interaction among key phenomena. The reproducibility of the indi-
vidual tests was also checked and demonstrated.
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• Dimensional results for aperture, pressure and outflow rate, obtained for Newtonian
(n = 1) and shear-thinning fluids (n = 0.7, n = 0.5) having the same apparent
viscosity at a reference shear rate specific to the problem at hand, yielded values of
comparable magnitude over the entire time range, except at very early times. Shear-
thinning fluids show a lower residual aperture and outflow rate than Newtonian at
all times of relevance for engineering applications. The application also highlights
the importance of comparing dimensional values of problem outputs when non-
Newtonian fluids are involved.

Our model is focused on the representation of the main fracture, and does not take
into account the existence of secondary fractures, either natural or induced by fracking.
Possible extensions include:

• consideration of a fluid constitutive equation which represents more accurately its
rheology, such as the Ellis or Carreau-Yasuda relation and its subcases;

• incorporation of slip effects, common with fracturing fluids [Barbati et al., 2016],
and of fluid compressibility.

• addition of multiple branching fractures;
• fracture(s) with variable aperture, associated with spatial variability and/or trends in
mean aperture between the fracture center and periphery.

A: Solution for a Newtonian fluid

For n = 1 eqs. (12-13) become

G(T) =
1

H3
dH
dT

, (A.1)

1
R
∂

∂R

(
R
∂P
∂R

)
= G(T), (A.2)

the boundary conditions (11) are unvaried and the solution is

P(R,T) =
1
4

G(T)
(
y2 − 2 ln y

)���R
Ri

. (A.3)

Introducing eq. (A.3) and eq. (A.1) into the integral condition (10) yields the nonlinear
ordinary differential equation governing the time evolution of the aperture and its initial
condition as

dH
dT
+

1
a

H3
(
Hλ − Pe + F0

) 1
n
= 0, H(0) = 1, (A.4)

where a is a coefficient equal to the finite integral of the radially varying part of the pres-
sure distribution given by (A.3) and expressed as

a =
1
16

(
4R2

i − R4
i − 4 ln Ri − 3

)
. (A.5)

If Pe = F0 = 0 the solution is

H(T) =
[
1 +
(λ + 2)

a
T
]−1/(λ+2)

, (A.6)

and the pressure field is

P(R,Ri,T) =
1
4a

[
1 +
(λ + 2)

a
T
]−λ/(λ+2) (

2 ln y − y2
)���R
Ri

. (A.7)

If Pe − F0 > 0 and ∂P/∂R > 0, a solution in implicit form is obtained as

T =
a

(2 + λ)

[
1

y2+λ 2F1

(
1,

2 + λ
λ

;
(2 + 2λ)

λ
;

Pe − F0

yλ

)] ����H
1
, (A.8)
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Figure B.1. Dimensionless pressure profiles scaled with respect to the asymptotic time pressure at different
times for outlet pressure Pe = 0, overload F0 = 0, λ = 1 and for a) n = 0.3, and b) n = 1.

and the pressure is computed as

P(R,Ri,H(T)) =
Pe − F0 − Hλ(T)

a

(
y2 − 2 ln y

)���R
Ri

. (A.9)

B: Late-time approximation for null exit pressure and overload

For late time (T � 1) the approximation for the fracture aperture given by eq. (17)
is

H(T) = AT−n/(1+n+λ), A =
(

na1/n

1 + n + λ

)n/(1+n+λ)
. (B.1)

Figure B.1 shows the pressure profiles scaled with respect to the asymptotic time
pressure, P ∼ Tλn/(1+n+λ). For n = 1 the progressive evolution towards a single curve is
evident, for n = 0.3 the collapse is much faster and curves overlap since T = 0.1.
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